- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Gh. Alahyarizadeh; A. Rezaie; Abdolhamid Minuchehr; M. Aghaie; I. Peivaste;Abstract A comprehensive molecular dynamics study was carried out to investigate the role of thorium and uranium contents on improving the thermal and mechanical properties of the Th1-xUxO2 nuclear fuels. In this regard, several thermophysical and mechanical properties of the Th1-xUxO2 solid solutions including the lattice parameter, density, thermal expansion coefficient, specific heat capacity, thermal conductivity, thermal diffusivity, linear (heat/power) rating, elastic constants (C11, C12, C44, bulk, shear, Young's moduli, and Poisson's ratio) and the maximum radial thermal stress applied to fuel pellets were numerically investigated in a wide range of temperature and compared with experimental results. The results indicated that the Th1-xUxO2 fuels have a lower density, specific heat capacity, and thermal expansion coefficient than pure UO2 at any temperature. The results also showed that the Th1-xUxO2 fuels could increase or decrease the thermal conductivity, thermal diffusivity, and the linear heat rating of nuclear fuels depending on the uranium content (x). The amount of x in which all of the mentioned parameters can rise calculated in a wide range of temperatures. Maximum radial thermal stress was another important parameter that explicated in this paper. Results demonstrated that the Th1-xUxO2 fuels have lower maximum radial thermal stress, especially at high temperatures. These improved the thermo-mechanical properties provide the possibility of rising the fuel burnup in the thorium-based fuels compared to the uranium-based fuels.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103644&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103644&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Gh. Alahyarizadeh; A. Rezaie; Abdolhamid Minuchehr; M. Aghaie; I. Peivaste;Abstract A comprehensive molecular dynamics study was carried out to investigate the role of thorium and uranium contents on improving the thermal and mechanical properties of the Th1-xUxO2 nuclear fuels. In this regard, several thermophysical and mechanical properties of the Th1-xUxO2 solid solutions including the lattice parameter, density, thermal expansion coefficient, specific heat capacity, thermal conductivity, thermal diffusivity, linear (heat/power) rating, elastic constants (C11, C12, C44, bulk, shear, Young's moduli, and Poisson's ratio) and the maximum radial thermal stress applied to fuel pellets were numerically investigated in a wide range of temperature and compared with experimental results. The results indicated that the Th1-xUxO2 fuels have a lower density, specific heat capacity, and thermal expansion coefficient than pure UO2 at any temperature. The results also showed that the Th1-xUxO2 fuels could increase or decrease the thermal conductivity, thermal diffusivity, and the linear heat rating of nuclear fuels depending on the uranium content (x). The amount of x in which all of the mentioned parameters can rise calculated in a wide range of temperatures. Maximum radial thermal stress was another important parameter that explicated in this paper. Results demonstrated that the Th1-xUxO2 fuels have lower maximum radial thermal stress, especially at high temperatures. These improved the thermo-mechanical properties provide the possibility of rising the fuel burnup in the thorium-based fuels compared to the uranium-based fuels.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103644&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103644&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Gh. Alahyarizadeh; A. Rezaie; Abdolhamid Minuchehr; M. Aghaie; I. Peivaste;Abstract A comprehensive molecular dynamics study was carried out to investigate the role of thorium and uranium contents on improving the thermal and mechanical properties of the Th1-xUxO2 nuclear fuels. In this regard, several thermophysical and mechanical properties of the Th1-xUxO2 solid solutions including the lattice parameter, density, thermal expansion coefficient, specific heat capacity, thermal conductivity, thermal diffusivity, linear (heat/power) rating, elastic constants (C11, C12, C44, bulk, shear, Young's moduli, and Poisson's ratio) and the maximum radial thermal stress applied to fuel pellets were numerically investigated in a wide range of temperature and compared with experimental results. The results indicated that the Th1-xUxO2 fuels have a lower density, specific heat capacity, and thermal expansion coefficient than pure UO2 at any temperature. The results also showed that the Th1-xUxO2 fuels could increase or decrease the thermal conductivity, thermal diffusivity, and the linear heat rating of nuclear fuels depending on the uranium content (x). The amount of x in which all of the mentioned parameters can rise calculated in a wide range of temperatures. Maximum radial thermal stress was another important parameter that explicated in this paper. Results demonstrated that the Th1-xUxO2 fuels have lower maximum radial thermal stress, especially at high temperatures. These improved the thermo-mechanical properties provide the possibility of rising the fuel burnup in the thorium-based fuels compared to the uranium-based fuels.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103644&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103644&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Gh. Alahyarizadeh; A. Rezaie; Abdolhamid Minuchehr; M. Aghaie; I. Peivaste;Abstract A comprehensive molecular dynamics study was carried out to investigate the role of thorium and uranium contents on improving the thermal and mechanical properties of the Th1-xUxO2 nuclear fuels. In this regard, several thermophysical and mechanical properties of the Th1-xUxO2 solid solutions including the lattice parameter, density, thermal expansion coefficient, specific heat capacity, thermal conductivity, thermal diffusivity, linear (heat/power) rating, elastic constants (C11, C12, C44, bulk, shear, Young's moduli, and Poisson's ratio) and the maximum radial thermal stress applied to fuel pellets were numerically investigated in a wide range of temperature and compared with experimental results. The results indicated that the Th1-xUxO2 fuels have a lower density, specific heat capacity, and thermal expansion coefficient than pure UO2 at any temperature. The results also showed that the Th1-xUxO2 fuels could increase or decrease the thermal conductivity, thermal diffusivity, and the linear heat rating of nuclear fuels depending on the uranium content (x). The amount of x in which all of the mentioned parameters can rise calculated in a wide range of temperatures. Maximum radial thermal stress was another important parameter that explicated in this paper. Results demonstrated that the Th1-xUxO2 fuels have lower maximum radial thermal stress, especially at high temperatures. These improved the thermo-mechanical properties provide the possibility of rising the fuel burnup in the thorium-based fuels compared to the uranium-based fuels.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103644&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103644&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu