- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 BelgiumPublisher:Wiley Deng, Wei; Younkin, James E.; Souris, Kevin; Huang, Sheng; Augustine, Kurt; Fatyga, Mirek; Ding, Xiaoning; Cohilis, Marie; Bues, Martin; Shan, Jie; Stoker, Joshua; Lin, Liyong; Shen, Jiajian; Liu, Wei;PurposeTo commission an open source Monte Carlo (MC) dose engine, “MCsquare” for a synchrotron‐based proton machine, integrate it into our in‐house C++‐based I/O user interface and our web‐based software platform, expand its functionalities, and improve calculation efficiency for intensity‐modulated proton therapy (IMPT).MethodsWe commissioned MCsquare using a double Gaussian beam model based on in‐air lateral profiles, integrated depth dose of 97 beam energies, and measurements of various spread‐out Bragg peaks (SOBPs). Then we integrated MCsquare into our C++‐based dose calculation code and web‐based second check platform “DOSeCHECK.” We validated the commissioned MCsquare based on 12 different patient geometries and compared the dose calculation with a well‐benchmarked GPU‐accelerated MC (gMC) dose engine. We further improved the MCsquare efficiency by employing the computed tomography (CT) resampling approach. We also expanded its functionality by adding a linear energy transfer (LET)‐related model‐dependent biological dose calculation.ResultsDifferences between MCsquare calculations and SOBP measurements were <2.5% (<1.5% for ~85% of measurements) in water. The dose distributions calculated using MCsquare agreed well with the results calculated using gMC in patient geometries. The average 3D gamma analysis (2%/2 mm) passing rates comparing MCsquare and gMC calculations in the 12 patient geometries were 98.0 ± 1.0%. The computation time to calculate one IMPT plan in patients’ geometries using an inexpensive CPU workstation (Intel Xeon E5‐2680 2.50 GHz) was 2.3 ± 1.8 min after the variable resolution technique was adopted. All calculations except for one craniospinal patient were finished within 3.5 min.ConclusionsMCsquare was successfully commissioned for a synchrotron‐based proton beam therapy delivery system and integrated into our web‐based second check platform. After adopting CT resampling and implementing LET model‐dependent biological dose calculation capabilities, MCsquare will be sufficiently efficient and powerful to achieve Monte Carlo‐based and LET‐guided robust optimization in IMPT, which will be done in the future studies.
Dépôt Institutionel ... arrow_drop_down Medical PhysicsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/mp.14125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Dépôt Institutionel ... arrow_drop_down Medical PhysicsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/mp.14125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 BelgiumPublisher:IOP Publishing Dirk Wagenaar; Linh T Tran; Arturs Meijers; Gabriel Guterres Marmitt; Kevin Souris; David Bolst; Benjamin James; Giordano Biasi; Marco Povoli; Angela Kok; Erik Traneus; Marc-Jan van Goethem; Johannes A Langendijk; Anatoly B Rosenfeld; Stefan Both;The relative biological effectiveness (RBE) of protons is highly variable and difficult to quantify. However, RBE is related to the local ionization density, which can be related to the physical measurable dose weighted linear energy transfer (LETD). The aim of this study was to validate the LETD calculations for proton therapy beams implemented in a commercially available treatment planning system (TPS) using microdosimetry measurements and independent LETD calculations (Open-MCsquare (MCS)). The TPS (RayStation v6R) was used to generate treatment plans on the CIRS-731-HN anthropomorphic phantom for three anatomical sites (brain, nasopharynx, neck) for a spherical target (Ø = 5 cm) with uniform target dose to calculate the LETD distribution. Measurements were performed at the University Medical Center Groningen proton therapy center (Proteus Plus, IBA) using a µ +-probe utilizing silicon on insulator microdosimeters capable of detecting lineal energies as low as 0.15 keV µm-1 in tissue. Dose averaged mean lineal energy [Formula: see text] depth-profiles were measured for 70 and 130 MeV spots in water and for the three treatment plans in water and an anthropomorphic phantom. The [Formula: see text] measurements were compared to the LETD calculated in the TPS and MCS independent dose calculation engine. D · [Formula: see text] was compared to D · LETD in terms of a gamma-index with a distance-to-agreement criteria of 2 mm and increasing dose difference criteria to determine the criteria for which a 90% pass rate was accomplished. Measurements of D · [Formula: see text] were in good agreement with the D · LETD calculated in the TPS and MCS. The 90% passing rate threshold was reached at different D · LETD difference criteria for single spots (TPS: 1% MCS: 1%), treatment plans in water (TPS: 3% MCS: 6%) and treatment plans in an anthropomorphic phantom (TPS: 6% MCS: 1%). We conclude that D · LETD calculations accuracy in the RayStation TPS and open MCSquare are within 6%, and sufficient for clinical D · LETD evaluation and optimization. These findings remove an important obstacle in the road towards clinical implementation of D · LETD evaluation and optimization of proton therapy treatment plans. Novelty and significance The dose weighed linear energy transfer (LETD) distribution can be calculated for proton therapy treatment plans by Monte Carlo dose engines. The relative biological effectiveness (RBE) of protons is known to vary with the LETD distribution. Therefore, there exists a need for accurate calculation of clinical LETD distributions. Previous LETD validations have focused on general purpose Monte Carlo dose engines which are typically not used clinically. We present the first validation of mean lineal energy [Formula: see text] measurements of the LETD against calculations by the Monte Carlo dose engines of the Raystation treatment planning system and open MCSquare.
Physics in Medicine ... arrow_drop_down Physics in Medicine and BiologyArticle . 2019License: taverneData sources: University of Groningen Research PortalPhysics in Medicine and BiologyArticle . 2020 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefPhysics in Medicine and BiologyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6560/ab5e97&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Physics in Medicine ... arrow_drop_down Physics in Medicine and BiologyArticle . 2019License: taverneData sources: University of Groningen Research PortalPhysics in Medicine and BiologyArticle . 2020 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefPhysics in Medicine and BiologyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6560/ab5e97&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 BelgiumPublisher:Wiley Alejandro Carabe; Kevin Souris; M. A. Cortés-Giraldo; A. Bertolet; A. Bertolet;PurposeTo introduce a new analytical methodology to calculate quantities of interest in particle radiotherapy inside the treatment planning system. Models are proposed to calculate dose‐averaged LET (LETd) in proton radiotherapy.Material and methodsA kernel‐based approach for the spectral fluence of particles is developed by means of analytical functions depending on depth and lateral position. These functions are obtained by fitting them to data calculated with Monte Carlo (MC) simulations using Geant4 in liquid water for energies from 50 to 250 MeV. Contributions of primary, secondary protons and alpha particles are modeled separately. Lateral profiles and spectra are modeled as Gaussian functions to be convolved with the fluence coming from the nozzle. LETd is obtained by integrating the stopping power curves from the PSTAR and ASTAR databases weighted by the spectrum at each position. The fast MC code MCsquare is employed to benchmark the results.ResultsConsidering the nine energies simulated, fits for the functions modeling the fluence in‐depth provide an average equal to 0.998, 0.995 and 0.986 for each one of the particles considered. Fits for the Gaussian lateral functions yield average of 0.997, 0.982 and 0.993, respectively. Similarly, the Gaussian functions fitted to the computed spectra lead to average of 0.995, 0.938 and 0.902. LETd calculation in water shows mean differences of −0.007 ± 0.008 keV/μm with respect to MCsquare if only protons are considered and 0.022 ± 0.007 keV/μm including alpha particles. In a prostate case, mean difference for all voxels with dose >5% of prescribed dose is 0.28 ± 0.23 keV/μm.ConclusionThis new spectral fluence‐based methodology allows for simultaneous calculations of quantities of interest in proton radiotherapy such as dose, LETd or microdosimetric quantities. The method also enables the inclusion of more particles by following an analogous process.
Dépôt Institutionel ... arrow_drop_down Medical PhysicsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/mp.14108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Dépôt Institutionel ... arrow_drop_down Medical PhysicsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/mp.14108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV S. Rossomme; Florence Bartier; Hugo Palmans; Antoine Delor; Jean-Marc Denis; Stefaan Vynckier; Stefaan Vynckier; Kevin Souris; Damien Dumont;pmid: 27567088
This study was initiated following conclusions from earlier experimental work, performed in a low-energy carbon ion beam, indicating a significant LET dependence of the response of a PTW-60019 microDiamond detector. The purpose of this paper is to present a comparison between the response of the same PTW-60019 microDiamond detector and an IBA Roos-type ionization chamber as a function of depth in a 62MeV proton beam. Even though proton beams are considered as low linear energy transfer (LET) beams, the LET value increases slightly in the Bragg peak region. Contrary to the observations made in the carbon ion beam, in the 62MeV proton beam good agreement is found between both detectors in both the plateau and the distal edge region. No significant LET dependent response of the PTW-60019 microDiamond detector is observed consistent with other findings for proton beams in the literature, despite this particular detector exhibiting a substantial LET dependence in a carbon ion beam.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ejmp.2016.08.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ejmp.2016.08.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 BelgiumPublisher:Wiley Deng, Wei; Younkin, James E.; Souris, Kevin; Huang, Sheng; Augustine, Kurt; Fatyga, Mirek; Ding, Xiaoning; Cohilis, Marie; Bues, Martin; Shan, Jie; Stoker, Joshua; Lin, Liyong; Shen, Jiajian; Liu, Wei;PurposeTo commission an open source Monte Carlo (MC) dose engine, “MCsquare” for a synchrotron‐based proton machine, integrate it into our in‐house C++‐based I/O user interface and our web‐based software platform, expand its functionalities, and improve calculation efficiency for intensity‐modulated proton therapy (IMPT).MethodsWe commissioned MCsquare using a double Gaussian beam model based on in‐air lateral profiles, integrated depth dose of 97 beam energies, and measurements of various spread‐out Bragg peaks (SOBPs). Then we integrated MCsquare into our C++‐based dose calculation code and web‐based second check platform “DOSeCHECK.” We validated the commissioned MCsquare based on 12 different patient geometries and compared the dose calculation with a well‐benchmarked GPU‐accelerated MC (gMC) dose engine. We further improved the MCsquare efficiency by employing the computed tomography (CT) resampling approach. We also expanded its functionality by adding a linear energy transfer (LET)‐related model‐dependent biological dose calculation.ResultsDifferences between MCsquare calculations and SOBP measurements were <2.5% (<1.5% for ~85% of measurements) in water. The dose distributions calculated using MCsquare agreed well with the results calculated using gMC in patient geometries. The average 3D gamma analysis (2%/2 mm) passing rates comparing MCsquare and gMC calculations in the 12 patient geometries were 98.0 ± 1.0%. The computation time to calculate one IMPT plan in patients’ geometries using an inexpensive CPU workstation (Intel Xeon E5‐2680 2.50 GHz) was 2.3 ± 1.8 min after the variable resolution technique was adopted. All calculations except for one craniospinal patient were finished within 3.5 min.ConclusionsMCsquare was successfully commissioned for a synchrotron‐based proton beam therapy delivery system and integrated into our web‐based second check platform. After adopting CT resampling and implementing LET model‐dependent biological dose calculation capabilities, MCsquare will be sufficiently efficient and powerful to achieve Monte Carlo‐based and LET‐guided robust optimization in IMPT, which will be done in the future studies.
Dépôt Institutionel ... arrow_drop_down Medical PhysicsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/mp.14125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Dépôt Institutionel ... arrow_drop_down Medical PhysicsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/mp.14125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 BelgiumPublisher:IOP Publishing Dirk Wagenaar; Linh T Tran; Arturs Meijers; Gabriel Guterres Marmitt; Kevin Souris; David Bolst; Benjamin James; Giordano Biasi; Marco Povoli; Angela Kok; Erik Traneus; Marc-Jan van Goethem; Johannes A Langendijk; Anatoly B Rosenfeld; Stefan Both;The relative biological effectiveness (RBE) of protons is highly variable and difficult to quantify. However, RBE is related to the local ionization density, which can be related to the physical measurable dose weighted linear energy transfer (LETD). The aim of this study was to validate the LETD calculations for proton therapy beams implemented in a commercially available treatment planning system (TPS) using microdosimetry measurements and independent LETD calculations (Open-MCsquare (MCS)). The TPS (RayStation v6R) was used to generate treatment plans on the CIRS-731-HN anthropomorphic phantom for three anatomical sites (brain, nasopharynx, neck) for a spherical target (Ø = 5 cm) with uniform target dose to calculate the LETD distribution. Measurements were performed at the University Medical Center Groningen proton therapy center (Proteus Plus, IBA) using a µ +-probe utilizing silicon on insulator microdosimeters capable of detecting lineal energies as low as 0.15 keV µm-1 in tissue. Dose averaged mean lineal energy [Formula: see text] depth-profiles were measured for 70 and 130 MeV spots in water and for the three treatment plans in water and an anthropomorphic phantom. The [Formula: see text] measurements were compared to the LETD calculated in the TPS and MCS independent dose calculation engine. D · [Formula: see text] was compared to D · LETD in terms of a gamma-index with a distance-to-agreement criteria of 2 mm and increasing dose difference criteria to determine the criteria for which a 90% pass rate was accomplished. Measurements of D · [Formula: see text] were in good agreement with the D · LETD calculated in the TPS and MCS. The 90% passing rate threshold was reached at different D · LETD difference criteria for single spots (TPS: 1% MCS: 1%), treatment plans in water (TPS: 3% MCS: 6%) and treatment plans in an anthropomorphic phantom (TPS: 6% MCS: 1%). We conclude that D · LETD calculations accuracy in the RayStation TPS and open MCSquare are within 6%, and sufficient for clinical D · LETD evaluation and optimization. These findings remove an important obstacle in the road towards clinical implementation of D · LETD evaluation and optimization of proton therapy treatment plans. Novelty and significance The dose weighed linear energy transfer (LETD) distribution can be calculated for proton therapy treatment plans by Monte Carlo dose engines. The relative biological effectiveness (RBE) of protons is known to vary with the LETD distribution. Therefore, there exists a need for accurate calculation of clinical LETD distributions. Previous LETD validations have focused on general purpose Monte Carlo dose engines which are typically not used clinically. We present the first validation of mean lineal energy [Formula: see text] measurements of the LETD against calculations by the Monte Carlo dose engines of the Raystation treatment planning system and open MCSquare.
Physics in Medicine ... arrow_drop_down Physics in Medicine and BiologyArticle . 2019License: taverneData sources: University of Groningen Research PortalPhysics in Medicine and BiologyArticle . 2020 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefPhysics in Medicine and BiologyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6560/ab5e97&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Physics in Medicine ... arrow_drop_down Physics in Medicine and BiologyArticle . 2019License: taverneData sources: University of Groningen Research PortalPhysics in Medicine and BiologyArticle . 2020 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefPhysics in Medicine and BiologyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6560/ab5e97&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 BelgiumPublisher:Wiley Alejandro Carabe; Kevin Souris; M. A. Cortés-Giraldo; A. Bertolet; A. Bertolet;PurposeTo introduce a new analytical methodology to calculate quantities of interest in particle radiotherapy inside the treatment planning system. Models are proposed to calculate dose‐averaged LET (LETd) in proton radiotherapy.Material and methodsA kernel‐based approach for the spectral fluence of particles is developed by means of analytical functions depending on depth and lateral position. These functions are obtained by fitting them to data calculated with Monte Carlo (MC) simulations using Geant4 in liquid water for energies from 50 to 250 MeV. Contributions of primary, secondary protons and alpha particles are modeled separately. Lateral profiles and spectra are modeled as Gaussian functions to be convolved with the fluence coming from the nozzle. LETd is obtained by integrating the stopping power curves from the PSTAR and ASTAR databases weighted by the spectrum at each position. The fast MC code MCsquare is employed to benchmark the results.ResultsConsidering the nine energies simulated, fits for the functions modeling the fluence in‐depth provide an average equal to 0.998, 0.995 and 0.986 for each one of the particles considered. Fits for the Gaussian lateral functions yield average of 0.997, 0.982 and 0.993, respectively. Similarly, the Gaussian functions fitted to the computed spectra lead to average of 0.995, 0.938 and 0.902. LETd calculation in water shows mean differences of −0.007 ± 0.008 keV/μm with respect to MCsquare if only protons are considered and 0.022 ± 0.007 keV/μm including alpha particles. In a prostate case, mean difference for all voxels with dose >5% of prescribed dose is 0.28 ± 0.23 keV/μm.ConclusionThis new spectral fluence‐based methodology allows for simultaneous calculations of quantities of interest in proton radiotherapy such as dose, LETd or microdosimetric quantities. The method also enables the inclusion of more particles by following an analogous process.
Dépôt Institutionel ... arrow_drop_down Medical PhysicsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/mp.14108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Dépôt Institutionel ... arrow_drop_down Medical PhysicsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/mp.14108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV S. Rossomme; Florence Bartier; Hugo Palmans; Antoine Delor; Jean-Marc Denis; Stefaan Vynckier; Stefaan Vynckier; Kevin Souris; Damien Dumont;pmid: 27567088
This study was initiated following conclusions from earlier experimental work, performed in a low-energy carbon ion beam, indicating a significant LET dependence of the response of a PTW-60019 microDiamond detector. The purpose of this paper is to present a comparison between the response of the same PTW-60019 microDiamond detector and an IBA Roos-type ionization chamber as a function of depth in a 62MeV proton beam. Even though proton beams are considered as low linear energy transfer (LET) beams, the LET value increases slightly in the Bragg peak region. Contrary to the observations made in the carbon ion beam, in the 62MeV proton beam good agreement is found between both detectors in both the plateau and the distal edge region. No significant LET dependent response of the PTW-60019 microDiamond detector is observed consistent with other findings for proton beams in the literature, despite this particular detector exhibiting a substantial LET dependence in a carbon ion beam.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ejmp.2016.08.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ejmp.2016.08.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu