- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Public Library of Science (PLoS) Muhammad Irfan; Ahmad Shaf; Tariq Ali; M. Zafar; Saifur Rahman; Salim Nasar Faraj Mursal; Faisal Althobiani; Majid Almas; H. M. Attar; Nagi Abdussamie;pmid: 37200368
pmc: PMC10194882
Electricity consumption prediction plays a vital role in intelligent energy management systems, and it is essential for electricity power supply companies to have accurate short and long-term energy predictions. In this study, a deep-ensembled neural network was used to anticipate hourly power utilization, providing a clear and effective approach for predicting power consumption. The dataset comprises of 13 files, each representing a different region, and ranges from 2004 to 2018, with two columns for the date, time, year and energy expenditure. The data was normalized using minmax scalar, and a deep ensembled (long short-term memory and recurrent neural network) model was used for energy consumption prediction. This proposed model effectively trains long-term dependencies in sequence order and has been assessed using several statistical metrics, including root mean squared error (RMSE), relative root mean squared error (rRMSE), mean absolute bias error (MABE), coefficient of determination (R2), mean bias error (MBE), and mean absolute percentage error (MAPE). Results show that the proposed model performs exceptionally well compared to existing models, indicating its effectiveness in accurately predicting energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0285456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0285456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Ghulam Ali; Tariq Ali; Insha Ul Hassan; Ahmad Shaf; Muhammad Irfan; Grzegorz Nowakowski; Kazimierz Kielkowicz; Adam Glowacz; Samar M. Alqhtani;High end-to-end delay is a significant challenge in the data collection process in the underwater environment. Autonomous Underwater Vehicles (AUVs) are a considerably reliable source of data collection if they have significant trajectory movement. Therefore, in this paper, a new routing algorithm known as Elliptical Shaped Efficient Data Gathering (ESEDG) is introduced for the AUV movement. ESEDG is divided into two phases: first, an elliptical trajectory has been designed for the horizontal movement of the AUV. In the second phase, the AUV gathers data from Gateway Nodes (GNs) which are associated with Member Nodes (MNs). For their association, an end-to-end delay model is also presented in ESEDG. The hierarchy of data collection is as follows: MNs send data to GNs, the AUV receives data from GNs, and forwards it to the sink node. Furthermore, the ESEDG was evaluated on the network simulator NS-3 version 3.35, and the results were compared to existing data collection routing protocols DSG–DGA, AEEDCO, AEEDCO-A, ALP, SEDG, and AEDG. In terms of network throughput, end-to-end delay, lifetime, path loss, and energy consumption, the results showed that ESEDG outperformed the baseline routing protocols.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/14/5269/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22145269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/14/5269/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22145269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:MDPI AG Saleh Almasabi; Turki Alsuwian; Muhammad Awais; Muhammad Irfan; Mohammed Jalalah; Belqasem Aljafari; Farid A. Harraz;Cyber-threats are becoming a big concern due to the potential severe consequences of such threats is false data injection (FDI) attacks where the measures data is manipulated such that the detection is unfeasible using traditional approaches. This work focuses on detecting FDIs for phasor measurement units where compromising one unit is sufficient for launching such attacks. In the proposed approach, moving averages and correlation are used along with machine learning algorithms to detect such attacks. The proposed approach is tested and validated using the IEEE 14-bus and the IEEE 30-bus test systems. The proposed performance was sufficient for detecting the location and attack instances under different scenarios and circumstances.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/9/3146/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22093146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/9/3146/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22093146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Muhammad Irfan; Usman Habib; Fazal Muhammad; Farman Ali; Abdullah S Alwadie; Shakir Ullah; Adam Glowacz; Witold Glowacz;doi: 10.3390/en13195064
Intelligent Transport Systems (ITS) are anticipated to be one of the key technologies for the next decade and their deployment can benefit from the recent developments in the domain of Visible Light Communication (VLC). Light Emitting Diode (LED)-based low-cost VLC is considered in this work to provide a practical approach towards the implementation of an ITS by addressing the major issues of channel noise, free-space optical multipath reflections and interference from light sources. An analytical model is presented for the proposed Multiple-Input–Single-Output (MISO)-based VLC, and simulations are performed to analyze the performance of the system for various transmission distances. Results show that the proposed optimal receiver for 4 × 1 MISO can provide considerable improvement in the bit error rate for the forward error correction (FEC) threshold of 3.8 × 10−3 in the presence of optical interference, and is suitable to support an ITS with an inter-vehicle transmission approach. The comparison of achieved performance with existing solutions for VLC-based ITS depicts that the proposed framework provides much higher data rates, three times longer transmission distance and improved receiver sensitivity.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5064/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5064/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Sami Ullah Khan; Muhammad Irfan; M. Ijaz Khan; A. Abbasi; Saif Ur Rahman; Usama Muhammad Niazi; Shahid Farooq;Journal of the India... arrow_drop_down Journal of the Indian Chemical SocietyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jics.2022.100399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of the India... arrow_drop_down Journal of the Indian Chemical SocietyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jics.2022.100399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Ayaz Hussain; Umar Draz; Tariq Ali; Saman Tariq; Muhammad Irfan; Adam Glowacz; Jose Alfonso Antonino Daviu; Sana Yasin; Saifur Rahman;doi: 10.3390/en13153930
handle: 10251/167455
Increasing waste generation has become a significant issue over the globe due to the rapid increase in urbanization and industrialization. In the literature, many issues that have a direct impact on the increase of waste and the improper disposal of waste have been investigated. Most of the existing work in the literature has focused on providing a cost-efficient solution for the monitoring of garbage collection system using the Internet of Things (IoT). Though an IoT-based solution provides the real-time monitoring of a garbage collection system, it is limited to control the spreading of overspill and bad odor blowout gasses. The poor and inadequate disposal of waste produces toxic gases, and radiation in the environment has adverse effects on human health, the greenhouse system, and global warming. While considering the importance of air pollutants, it is imperative to monitor and forecast the concentration of air pollutants in addition to the management of the waste. In this paper, we present and IoT-based smart bin using a machine and deep learning model to manage the disposal of garbage and to forecast the air pollutant present in the surrounding bin environment. The smart bin is connected to an IoT-based server, the Google Cloud Server (GCP), which performs the computation necessary for predicting the status of the bin and for forecasting air quality based on real-time data. We experimented with a traditional model (k-nearest neighbors algorithm (k-NN) and logistic reg) and a non-traditional (long short term memory (LSTM) network-based deep learning) algorithm for the creation of alert messages regarding bin status and forecasting the amount of air pollutant carbon monoxide (CO) present in the air at a specific instance. The recalls of logistic regression and k-NN algorithm is 79% and 83%, respectively, in a real-time testing environment for predicting the status of the bin. The accuracy of modified LSTM and simple LSTM models is 90% and 88%, respectively, to predict the future concentration of gases present in the air. The system resulted in a delay of 4 s in the creation and transmission of the alert message to a sanitary worker. The system provided the real-time monitoring of garbage levels along with notifications from the alert mechanism. The proposed works provide improved accuracy by utilizing machine learning as compared to existing solutions based on simple approaches.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3930/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 71visibility views 71 download downloads 94 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3930/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Abdulmajeed Alqhatani; Muhammad Shoaib Ashraf; Javed Ferzund; Ahmad Shaf; Hamad Ali Abosaq; Saifur Rahman; Muhammad Irfan; Samar M. Alqhtani;doi: 10.3390/su141911942
Business owners and managers need strategic information to plan and execute their decisions regarding business operations. They work in a cyclic plan of execution and evaluation. In order to run this cycle smoothly, they need a mechanism that should access the entire business performance. The sole purpose of this study is to assist them through applied research framework-based analysis to obtain effective results. The backbone of the purposed framework is a hybrid mechanism that comprises business intelligence (BI) and machine learning (ML) to support 360-degree organization-wide analysis. BI modeling gives descriptive and diagnostic analysis via interactive reports with quick ad hoc analysis which can be performed by executives and managers. ML modeling predicts the performance and highlights the potential customers, products, and time intervals. The whole mechanism is resource-efficient and automated once it binds with the operational data pipeline and presented results in a highly efficient manner. Data analysis is far more efficient when it is applied to the right data at the right time and presents the insights to the right stakeholders in a friendly, usable environment. The results are beneficial to viewing the past, current, and future performance with self-explanatory graphical interpretation. In the proposed system, a clear performance view is possible by utilizing the sales transaction data. By exploring the hidden patterns of sales facts, the impact of the business dimensions is evaluated and presented on a dynamically filtered dashboard.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141911942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141911942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Mabkhoot Alsaiari; Basil Onyekayahweh Nwafor; Maman Hermana; Al Marzouki Hassan H. M.; +1 AuthorsMabkhoot Alsaiari; Basil Onyekayahweh Nwafor; Maman Hermana; Al Marzouki Hassan H. M.; Mohammed Irfan;doi: 10.3390/su15076006
Being a fast-growing city with a high rate of urbanization and agricultural development, the city of Najran, situated in the southwest of the Kingdom of Saudi Arabia, has witnessed a series of earth fissuring events and some other geo-environmental hazards in recent times. These fissures have posed a significant threat to inhabitants and infrastructure in the area. A few studies suggest that excessive groundwater withdrawal is responsible for fissuring activities. Because of the intensity of this geo-hazard, this article presupposes that groundwater extraction alone cannot be responsible for the magnitude of fissuring activity in the area and discusses other severe factors that could be responsible for the earth fissures. The study proposes that the cause of the problem is multifaceted and synergistic, and outlines threatening factors that can inherently trigger more fissures in the region, based on the geologic history of the area and a critical review of investigative studies conducted in the area and beyond. Predicated on the region’s structural history, some undiscovered elements that can potentially cause fissuring in the region were identified and discussed. Some of these include the pre-existence of a fault system, a crack from the bedrock ridge, the existence of paleochannels, the collapsibility of loess, the tectonic (earthquake) history of the area, and differential compaction due to heterogeneity. The use of a metaheuristic and a combined application integrating other optimization algorithms can be utilized to determine optimum hyperparameters and present their statistical importance, thereby improving accuracy and dependability in fissure prediction in Najran. Reliable models would primarily be used to monitor active fissures and identify key factors utilizing spatial information, subsidence, groundwater-related data sets, etc.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15076006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15076006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Umar Draz; Sana Yasin; Muhammad Irfan; Tariq Ali; Amjad Ali; Adam Glowacz; Frantisek Brumercik; Witold Glowacz;The Internet of Things (IoT) is an emerging technology in underwater communication because of its potential to monitor underwater activities. IoT devices enable a variety of applications such as submarine and navy defense systems, pre-disaster prevention, and gas/oil exploration in deep and shallow water. The IoT devices have limited power due to their size. Many routing protocols have been proposed in applications, as mentioned above, in different aspects, but timely action and energy make these a challenging task for marine research. Therefore, this research presents a routing technique with three sub-sections, Tri-Angular Nearest Vector-Based Energy Efficient Routing (TANVEER): Layer-Based Adjustment (LBA-TANVEER), Data Packet Delivery (DPD-TANVEER), and Binary Inter Nodes (BIN-TANVEER). In TANVEER, the path is selected between the source node and sonobuoys by computing the angle three times with horizontal, vertical, and diagonal directions by using the nearest vector-based approach to avoid the empty nodes/region. In order to deploy the nodes, the LBA-TANVEER is used. Furthermore, for successful data delivery, the DPD-TANVEER is responsible for bypassing any empty nodes/region occurrence. BIN-TANVEER works with new watchman nodes that play an essential role in the path/data shifting mechanism. Moreover, achievable empty regions are also calculated by linear programming to minimize energy consumption and throughput maximization. Different evaluation parameters perform extensive simulation, and the coverage area of the proposed scheme is also presented. The simulated results show that the proposed technique outperforms the compared baseline scheme layer-by-layer angle-based flooding (L2-ABF) in terms of energy, throughput, Packet Delivery Ratio (PDR) and a fraction of empty regions.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/11/3578/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21113578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/11/3578/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21113578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United KingdomPublisher:MDPI AG Funded by:FCT | LA 1FCT| LA 1Waqas Ahmad; Nasir Ayub; Tariq Ali; Muhammad Irfan; Muhammad Awais; Muhammad Shiraz; Adam Glowacz;doi: 10.3390/en13112907
Forecasting the electricity load provides its future trends, consumption patterns and its usage. There is no proper strategy to monitor the energy consumption and generation; and high variation among them. Many strategies are used to overcome this problem. The correct selection of parameter values of a classifier is still an issue. Therefore, an optimization algorithm is applied with deep learning and machine learning techniques to select the optimized values for the classifier’s hyperparameters. In this paper, a novel deep learning-based method is implemented for electricity load forecasting. A three-step model is also implemented, including feature selection using a hybrid feature selector (XGboost and decision tee), redundancy removal using feature extraction technique (Recursive Feature Elimination) and classification/forecasting using improved Support Vector Machine (SVM) and Extreme Learning Machine (ELM). The hyperparameters of ELM are tuned with a meta-heuristic algorithm, i.e., Genetic Algorithm (GA) and hyperparameters of SVM are tuned with the Grid Search Algorithm. The simulation results are shown in graphs and the values are shown in tabular form and they clearly show that our improved methods outperform State Of The Art (SOTA) methods in terms of accuracy and performance. The forecasting accuracy of Extreme Learning Machine based Genetic Algo (ELM-GA) and Support Vector Machine based Grid Search (SVM-GS) is 96.3% and 93.25%, respectively. The accuracy of our improved techniques, i.e., ELM-GA and SVM-GS is 10% and 7%, respectively, higher than the SOTA techniques.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2907/pdfData sources: Multidisciplinary Digital Publishing InstituteLancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2907/pdfData sources: Multidisciplinary Digital Publishing InstituteLancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Public Library of Science (PLoS) Muhammad Irfan; Ahmad Shaf; Tariq Ali; M. Zafar; Saifur Rahman; Salim Nasar Faraj Mursal; Faisal Althobiani; Majid Almas; H. M. Attar; Nagi Abdussamie;pmid: 37200368
pmc: PMC10194882
Electricity consumption prediction plays a vital role in intelligent energy management systems, and it is essential for electricity power supply companies to have accurate short and long-term energy predictions. In this study, a deep-ensembled neural network was used to anticipate hourly power utilization, providing a clear and effective approach for predicting power consumption. The dataset comprises of 13 files, each representing a different region, and ranges from 2004 to 2018, with two columns for the date, time, year and energy expenditure. The data was normalized using minmax scalar, and a deep ensembled (long short-term memory and recurrent neural network) model was used for energy consumption prediction. This proposed model effectively trains long-term dependencies in sequence order and has been assessed using several statistical metrics, including root mean squared error (RMSE), relative root mean squared error (rRMSE), mean absolute bias error (MABE), coefficient of determination (R2), mean bias error (MBE), and mean absolute percentage error (MAPE). Results show that the proposed model performs exceptionally well compared to existing models, indicating its effectiveness in accurately predicting energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0285456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0285456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Ghulam Ali; Tariq Ali; Insha Ul Hassan; Ahmad Shaf; Muhammad Irfan; Grzegorz Nowakowski; Kazimierz Kielkowicz; Adam Glowacz; Samar M. Alqhtani;High end-to-end delay is a significant challenge in the data collection process in the underwater environment. Autonomous Underwater Vehicles (AUVs) are a considerably reliable source of data collection if they have significant trajectory movement. Therefore, in this paper, a new routing algorithm known as Elliptical Shaped Efficient Data Gathering (ESEDG) is introduced for the AUV movement. ESEDG is divided into two phases: first, an elliptical trajectory has been designed for the horizontal movement of the AUV. In the second phase, the AUV gathers data from Gateway Nodes (GNs) which are associated with Member Nodes (MNs). For their association, an end-to-end delay model is also presented in ESEDG. The hierarchy of data collection is as follows: MNs send data to GNs, the AUV receives data from GNs, and forwards it to the sink node. Furthermore, the ESEDG was evaluated on the network simulator NS-3 version 3.35, and the results were compared to existing data collection routing protocols DSG–DGA, AEEDCO, AEEDCO-A, ALP, SEDG, and AEDG. In terms of network throughput, end-to-end delay, lifetime, path loss, and energy consumption, the results showed that ESEDG outperformed the baseline routing protocols.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/14/5269/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22145269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/14/5269/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22145269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:MDPI AG Saleh Almasabi; Turki Alsuwian; Muhammad Awais; Muhammad Irfan; Mohammed Jalalah; Belqasem Aljafari; Farid A. Harraz;Cyber-threats are becoming a big concern due to the potential severe consequences of such threats is false data injection (FDI) attacks where the measures data is manipulated such that the detection is unfeasible using traditional approaches. This work focuses on detecting FDIs for phasor measurement units where compromising one unit is sufficient for launching such attacks. In the proposed approach, moving averages and correlation are used along with machine learning algorithms to detect such attacks. The proposed approach is tested and validated using the IEEE 14-bus and the IEEE 30-bus test systems. The proposed performance was sufficient for detecting the location and attack instances under different scenarios and circumstances.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/9/3146/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22093146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/9/3146/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22093146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Muhammad Irfan; Usman Habib; Fazal Muhammad; Farman Ali; Abdullah S Alwadie; Shakir Ullah; Adam Glowacz; Witold Glowacz;doi: 10.3390/en13195064
Intelligent Transport Systems (ITS) are anticipated to be one of the key technologies for the next decade and their deployment can benefit from the recent developments in the domain of Visible Light Communication (VLC). Light Emitting Diode (LED)-based low-cost VLC is considered in this work to provide a practical approach towards the implementation of an ITS by addressing the major issues of channel noise, free-space optical multipath reflections and interference from light sources. An analytical model is presented for the proposed Multiple-Input–Single-Output (MISO)-based VLC, and simulations are performed to analyze the performance of the system for various transmission distances. Results show that the proposed optimal receiver for 4 × 1 MISO can provide considerable improvement in the bit error rate for the forward error correction (FEC) threshold of 3.8 × 10−3 in the presence of optical interference, and is suitable to support an ITS with an inter-vehicle transmission approach. The comparison of achieved performance with existing solutions for VLC-based ITS depicts that the proposed framework provides much higher data rates, three times longer transmission distance and improved receiver sensitivity.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5064/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5064/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Sami Ullah Khan; Muhammad Irfan; M. Ijaz Khan; A. Abbasi; Saif Ur Rahman; Usama Muhammad Niazi; Shahid Farooq;Journal of the India... arrow_drop_down Journal of the Indian Chemical SocietyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jics.2022.100399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of the India... arrow_drop_down Journal of the Indian Chemical SocietyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jics.2022.100399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Ayaz Hussain; Umar Draz; Tariq Ali; Saman Tariq; Muhammad Irfan; Adam Glowacz; Jose Alfonso Antonino Daviu; Sana Yasin; Saifur Rahman;doi: 10.3390/en13153930
handle: 10251/167455
Increasing waste generation has become a significant issue over the globe due to the rapid increase in urbanization and industrialization. In the literature, many issues that have a direct impact on the increase of waste and the improper disposal of waste have been investigated. Most of the existing work in the literature has focused on providing a cost-efficient solution for the monitoring of garbage collection system using the Internet of Things (IoT). Though an IoT-based solution provides the real-time monitoring of a garbage collection system, it is limited to control the spreading of overspill and bad odor blowout gasses. The poor and inadequate disposal of waste produces toxic gases, and radiation in the environment has adverse effects on human health, the greenhouse system, and global warming. While considering the importance of air pollutants, it is imperative to monitor and forecast the concentration of air pollutants in addition to the management of the waste. In this paper, we present and IoT-based smart bin using a machine and deep learning model to manage the disposal of garbage and to forecast the air pollutant present in the surrounding bin environment. The smart bin is connected to an IoT-based server, the Google Cloud Server (GCP), which performs the computation necessary for predicting the status of the bin and for forecasting air quality based on real-time data. We experimented with a traditional model (k-nearest neighbors algorithm (k-NN) and logistic reg) and a non-traditional (long short term memory (LSTM) network-based deep learning) algorithm for the creation of alert messages regarding bin status and forecasting the amount of air pollutant carbon monoxide (CO) present in the air at a specific instance. The recalls of logistic regression and k-NN algorithm is 79% and 83%, respectively, in a real-time testing environment for predicting the status of the bin. The accuracy of modified LSTM and simple LSTM models is 90% and 88%, respectively, to predict the future concentration of gases present in the air. The system resulted in a delay of 4 s in the creation and transmission of the alert message to a sanitary worker. The system provided the real-time monitoring of garbage levels along with notifications from the alert mechanism. The proposed works provide improved accuracy by utilizing machine learning as compared to existing solutions based on simple approaches.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3930/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 71visibility views 71 download downloads 94 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3930/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Abdulmajeed Alqhatani; Muhammad Shoaib Ashraf; Javed Ferzund; Ahmad Shaf; Hamad Ali Abosaq; Saifur Rahman; Muhammad Irfan; Samar M. Alqhtani;doi: 10.3390/su141911942
Business owners and managers need strategic information to plan and execute their decisions regarding business operations. They work in a cyclic plan of execution and evaluation. In order to run this cycle smoothly, they need a mechanism that should access the entire business performance. The sole purpose of this study is to assist them through applied research framework-based analysis to obtain effective results. The backbone of the purposed framework is a hybrid mechanism that comprises business intelligence (BI) and machine learning (ML) to support 360-degree organization-wide analysis. BI modeling gives descriptive and diagnostic analysis via interactive reports with quick ad hoc analysis which can be performed by executives and managers. ML modeling predicts the performance and highlights the potential customers, products, and time intervals. The whole mechanism is resource-efficient and automated once it binds with the operational data pipeline and presented results in a highly efficient manner. Data analysis is far more efficient when it is applied to the right data at the right time and presents the insights to the right stakeholders in a friendly, usable environment. The results are beneficial to viewing the past, current, and future performance with self-explanatory graphical interpretation. In the proposed system, a clear performance view is possible by utilizing the sales transaction data. By exploring the hidden patterns of sales facts, the impact of the business dimensions is evaluated and presented on a dynamically filtered dashboard.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141911942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141911942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Mabkhoot Alsaiari; Basil Onyekayahweh Nwafor; Maman Hermana; Al Marzouki Hassan H. M.; +1 AuthorsMabkhoot Alsaiari; Basil Onyekayahweh Nwafor; Maman Hermana; Al Marzouki Hassan H. M.; Mohammed Irfan;doi: 10.3390/su15076006
Being a fast-growing city with a high rate of urbanization and agricultural development, the city of Najran, situated in the southwest of the Kingdom of Saudi Arabia, has witnessed a series of earth fissuring events and some other geo-environmental hazards in recent times. These fissures have posed a significant threat to inhabitants and infrastructure in the area. A few studies suggest that excessive groundwater withdrawal is responsible for fissuring activities. Because of the intensity of this geo-hazard, this article presupposes that groundwater extraction alone cannot be responsible for the magnitude of fissuring activity in the area and discusses other severe factors that could be responsible for the earth fissures. The study proposes that the cause of the problem is multifaceted and synergistic, and outlines threatening factors that can inherently trigger more fissures in the region, based on the geologic history of the area and a critical review of investigative studies conducted in the area and beyond. Predicated on the region’s structural history, some undiscovered elements that can potentially cause fissuring in the region were identified and discussed. Some of these include the pre-existence of a fault system, a crack from the bedrock ridge, the existence of paleochannels, the collapsibility of loess, the tectonic (earthquake) history of the area, and differential compaction due to heterogeneity. The use of a metaheuristic and a combined application integrating other optimization algorithms can be utilized to determine optimum hyperparameters and present their statistical importance, thereby improving accuracy and dependability in fissure prediction in Najran. Reliable models would primarily be used to monitor active fissures and identify key factors utilizing spatial information, subsidence, groundwater-related data sets, etc.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15076006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15076006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Umar Draz; Sana Yasin; Muhammad Irfan; Tariq Ali; Amjad Ali; Adam Glowacz; Frantisek Brumercik; Witold Glowacz;The Internet of Things (IoT) is an emerging technology in underwater communication because of its potential to monitor underwater activities. IoT devices enable a variety of applications such as submarine and navy defense systems, pre-disaster prevention, and gas/oil exploration in deep and shallow water. The IoT devices have limited power due to their size. Many routing protocols have been proposed in applications, as mentioned above, in different aspects, but timely action and energy make these a challenging task for marine research. Therefore, this research presents a routing technique with three sub-sections, Tri-Angular Nearest Vector-Based Energy Efficient Routing (TANVEER): Layer-Based Adjustment (LBA-TANVEER), Data Packet Delivery (DPD-TANVEER), and Binary Inter Nodes (BIN-TANVEER). In TANVEER, the path is selected between the source node and sonobuoys by computing the angle three times with horizontal, vertical, and diagonal directions by using the nearest vector-based approach to avoid the empty nodes/region. In order to deploy the nodes, the LBA-TANVEER is used. Furthermore, for successful data delivery, the DPD-TANVEER is responsible for bypassing any empty nodes/region occurrence. BIN-TANVEER works with new watchman nodes that play an essential role in the path/data shifting mechanism. Moreover, achievable empty regions are also calculated by linear programming to minimize energy consumption and throughput maximization. Different evaluation parameters perform extensive simulation, and the coverage area of the proposed scheme is also presented. The simulated results show that the proposed technique outperforms the compared baseline scheme layer-by-layer angle-based flooding (L2-ABF) in terms of energy, throughput, Packet Delivery Ratio (PDR) and a fraction of empty regions.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/11/3578/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21113578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/11/3578/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21113578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United KingdomPublisher:MDPI AG Funded by:FCT | LA 1FCT| LA 1Waqas Ahmad; Nasir Ayub; Tariq Ali; Muhammad Irfan; Muhammad Awais; Muhammad Shiraz; Adam Glowacz;doi: 10.3390/en13112907
Forecasting the electricity load provides its future trends, consumption patterns and its usage. There is no proper strategy to monitor the energy consumption and generation; and high variation among them. Many strategies are used to overcome this problem. The correct selection of parameter values of a classifier is still an issue. Therefore, an optimization algorithm is applied with deep learning and machine learning techniques to select the optimized values for the classifier’s hyperparameters. In this paper, a novel deep learning-based method is implemented for electricity load forecasting. A three-step model is also implemented, including feature selection using a hybrid feature selector (XGboost and decision tee), redundancy removal using feature extraction technique (Recursive Feature Elimination) and classification/forecasting using improved Support Vector Machine (SVM) and Extreme Learning Machine (ELM). The hyperparameters of ELM are tuned with a meta-heuristic algorithm, i.e., Genetic Algorithm (GA) and hyperparameters of SVM are tuned with the Grid Search Algorithm. The simulation results are shown in graphs and the values are shown in tabular form and they clearly show that our improved methods outperform State Of The Art (SOTA) methods in terms of accuracy and performance. The forecasting accuracy of Extreme Learning Machine based Genetic Algo (ELM-GA) and Support Vector Machine based Grid Search (SVM-GS) is 96.3% and 93.25%, respectively. The accuracy of our improved techniques, i.e., ELM-GA and SVM-GS is 10% and 7%, respectively, higher than the SOTA techniques.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2907/pdfData sources: Multidisciplinary Digital Publishing InstituteLancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2907/pdfData sources: Multidisciplinary Digital Publishing InstituteLancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu