- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2005 ItalyPublisher:Springer Science and Business Media LLC PALADE, PETRU; PRINCIPI, GIOVANNI; SPATARU, TUDOR; P. BLAHA; K. SCHWARZ; V. KUNCSER; LO RUSSO, SERGIO; S. DAL TOE'; V. A. YARTYS;handle: 11577/2435143
LaNiSn and NdNiSn compounds and their deuterides have been studied by variable temperature 119Sn Mossbauer spectroscopy. The hyperfine parameters obtained experimentally are in good agreement with those derived from first principle calculations. The enlargement of quadrupole splitting observed for LaNiSn after deuteration confirms the lower symmetry of electron density around tin atoms indicated by the calculation of partial Sn-p density of states (DOS). Magnetic ordering is observed at low temperature in deuterided NdNiSn.
Journal of Radioanal... arrow_drop_down Journal of Radioanalytical and Nuclear ChemistryArticle . 2005 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10967-005-0947-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Radioanal... arrow_drop_down Journal of Radioanalytical and Nuclear ChemistryArticle . 2005 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10967-005-0947-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 ItalyPublisher:Springer Science and Business Media LLC PALADE, PETRU; PRINCIPI, GIOVANNI; SPATARU, TUDOR; P. BLAHA; K. SCHWARZ; V. KUNCSER; LO RUSSO, SERGIO; S. DAL TOE'; V. A. YARTYS;handle: 11577/2435143
LaNiSn and NdNiSn compounds and their deuterides have been studied by variable temperature 119Sn Mossbauer spectroscopy. The hyperfine parameters obtained experimentally are in good agreement with those derived from first principle calculations. The enlargement of quadrupole splitting observed for LaNiSn after deuteration confirms the lower symmetry of electron density around tin atoms indicated by the calculation of partial Sn-p density of states (DOS). Magnetic ordering is observed at low temperature in deuterided NdNiSn.
Journal of Radioanal... arrow_drop_down Journal of Radioanalytical and Nuclear ChemistryArticle . 2005 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10967-005-0947-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Radioanal... arrow_drop_down Journal of Radioanalytical and Nuclear ChemistryArticle . 2005 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10967-005-0947-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NorwayPublisher:MDPI AG Kwo-Hsiung Young; John Koch; Chubin Wan; Roman Denys; Volodymyr Yartys;handle: 11250/2460274 , 11250/2469288
The performance of cylindrical cells made from negative electrode active materials of two selected AB2 metal hydride chemistries with different dominating Laves phases (C14 vs. C15) were compared. Cells made from Alloy C15 showed a higher high-rate performance and peak power with a corresponding sacrifice in capacity, low-temperature performance, charge retention, and cycle life when compared with the C14 counterpart (Alloy C14). Annealing of the Alloy C15 eliminated the ZrNi secondary phase and further improved the high-rate and peak power performance. This treatment on Alloy C15 showed the best low-temperature performance, but also contributed to a less-desirable high-temperature voltage stand and an inferior cycle stability. While the main failure mode for Alloy C14 in the sealed cell is the formation of a thick oxide layer that prevents gas recombination during overcharge and consequent venting of the cell, the failure mode for Alloy C15 is dominated by continuous pulverization related to the volumetric changes during hydride formation and hysteresis in the pressure-composition-temperature isotherm. The leached-out Mn from Alloy C15 formed a high density of oxide deposits in the separator, leading to a deterioration in charge retention performance. Large amounts of Zr were found in the positive electrode of the cycled cell containing Alloy C15, but did not appear to harm cell performance. Suggestions for further composition and process optimization for Alloy C15 are also provided.
Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/4/29/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3040029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/4/29/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3040029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NorwayPublisher:MDPI AG Kwo-Hsiung Young; John Koch; Chubin Wan; Roman Denys; Volodymyr Yartys;handle: 11250/2460274 , 11250/2469288
The performance of cylindrical cells made from negative electrode active materials of two selected AB2 metal hydride chemistries with different dominating Laves phases (C14 vs. C15) were compared. Cells made from Alloy C15 showed a higher high-rate performance and peak power with a corresponding sacrifice in capacity, low-temperature performance, charge retention, and cycle life when compared with the C14 counterpart (Alloy C14). Annealing of the Alloy C15 eliminated the ZrNi secondary phase and further improved the high-rate and peak power performance. This treatment on Alloy C15 showed the best low-temperature performance, but also contributed to a less-desirable high-temperature voltage stand and an inferior cycle stability. While the main failure mode for Alloy C14 in the sealed cell is the formation of a thick oxide layer that prevents gas recombination during overcharge and consequent venting of the cell, the failure mode for Alloy C15 is dominated by continuous pulverization related to the volumetric changes during hydride formation and hysteresis in the pressure-composition-temperature isotherm. The leached-out Mn from Alloy C15 formed a high density of oxide deposits in the separator, leading to a deterioration in charge retention performance. Large amounts of Zr were found in the positive electrode of the cycled cell containing Alloy C15, but did not appear to harm cell performance. Suggestions for further composition and process optimization for Alloy C15 are also provided.
Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/4/29/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3040029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/4/29/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3040029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SerbiaPublisher:Elsevier BV Jing Yao; Leilei Guo; Pengfei Zhu; Fusheng Yang; Hongli Yan; Sandra Kurko; Volodymyr A. Yartys; Zaoxiao Zhang; Zhen Wu;Abstract Desalination is an important method to take full advantage of the sea water to produce fresh water. However, the systems or devices reported previously still have the limitations in the energy supply and portability when used in some specific application scenarios, such as island and remote coastal area. In this paper, a multi-function desalination system is proposed, which could provide fresh water, electrical energy, and even the cold energy based on the hydrolysis reaction of hydride and fuel cell water recovery. Besides, the system could be modified to increase the flexibility of the system operation to satisfy the various energy demands under different conditions. A lumped parameter model of the proposed system is developed to evaluate the system performance. The results show that the fuel cell helps to increase the absolute humidity of the wet air by 15.5% and to increase the water production by condensing the wet air by 1.8 times compared with simple water harvest from the ambient environment. The modified system demonstrates more stable performance of the water production than the original desalination system, which means that the modified system is less affected by the parameter variation. The maximum water production of the kW level system could achieve 11.10 kg/h. Comparing with the previous reports, the unit power consumption of the modified system could reach the lowest level (about 880 Wh/kg), showing the promising water production performance of the system developed in this work.
VinaR - Repository o... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 35visibility views 35 Powered bymore_vert VinaR - Repository o... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SerbiaPublisher:Elsevier BV Jing Yao; Leilei Guo; Pengfei Zhu; Fusheng Yang; Hongli Yan; Sandra Kurko; Volodymyr A. Yartys; Zaoxiao Zhang; Zhen Wu;Abstract Desalination is an important method to take full advantage of the sea water to produce fresh water. However, the systems or devices reported previously still have the limitations in the energy supply and portability when used in some specific application scenarios, such as island and remote coastal area. In this paper, a multi-function desalination system is proposed, which could provide fresh water, electrical energy, and even the cold energy based on the hydrolysis reaction of hydride and fuel cell water recovery. Besides, the system could be modified to increase the flexibility of the system operation to satisfy the various energy demands under different conditions. A lumped parameter model of the proposed system is developed to evaluate the system performance. The results show that the fuel cell helps to increase the absolute humidity of the wet air by 15.5% and to increase the water production by condensing the wet air by 1.8 times compared with simple water harvest from the ambient environment. The modified system demonstrates more stable performance of the water production than the original desalination system, which means that the modified system is less affected by the parameter variation. The maximum water production of the kW level system could achieve 11.10 kg/h. Comparing with the previous reports, the unit power consumption of the modified system could reach the lowest level (about 880 Wh/kg), showing the promising water production performance of the system developed in this work.
VinaR - Repository o... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 35visibility views 35 Powered bymore_vert VinaR - Repository o... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Australia, Norway, Norway, NorwayPublisher:MDPI AG Funded by:RCN | NOVEL MAGNESIUM BASED NAN...RCN| NOVEL MAGNESIUM BASED NANOMATERIALS FOR ADVANCED RECHARGEABLE BATTERIESAuthors: Denys, Roman V; Yartys, Volodymyr A; Gray, Evan MacA; Webb, Colin J;doi: 10.3390/en8043198
handle: 11250/2356290 , 11250/2364797 , 10072/124971
This work focused on the high pressure PCT and in situ neutron powder diffraction studies of the LaMg2Ni9-H2 (D2) system at pressures up to 1,000 bar. LaMg2Ni9 alloy was prepared by a powder metallurgy route from the LaNi9 alloy precursor and Mg powder. Two La3−xMgxNi9 samples with slightly different La/Mg ratios were studied, La1.1Mg1.9Ni9 (sample 1) and La0.9Mg2.1Ni9 (sample 2). In situ neutron powder diffraction studies of the La1.09Mg1.91Ni9D9.5 (1) and La0.91Mg2.09Ni9D9.4 (2) deuterides were performed at 25 bar D2 (1) and 918 bar D2 (2). The hydrogenation properties of the (1) and (2) are dramatically different from those for LaNi3. The Mg-containing intermetallics reversibly form hydrides with DHdes = 24.0 kJ/molH2 and an equilibrium pressure of H2 desorption of 18 bar at 20 °C (La1.09Mg1.91Ni9). A pronounced hysteresis of H2 absorption and desorption, ~100 bar, is observed. The studies showed that LaNi5-assisted hydrogenation of MgNi2 in the LaMg2Ni9 hybrid structure takes place. In the La1.09Mg1.91Ni9D9.5 (1) and La0.91Mg2.09Ni9D9.4 (2) (a = 5.263/5.212; c = 25.803/25.71 Å) D atoms are accommodated in both Laves and CaCu5-type slabs. In the LaNi5 CaCu5-type layer, D atoms fill three types of interstices; a deformed octahedron [La2Ni4], and [La(Mg)2Ni2] and [Ni4] tetrahedra. The overall chemical compositions can be presented as LaNi5H5.6/5.0 + 2*MgNi2H1.95/2.2 showing that the hydrogenation of the MgNi2 slab proceeds at mild H2/D2 pressure of just 20 bar. A partial filling by D of the four types of the tetrahedral interstices in the MgNi2 slab takes place, including [MgNi3] and [Mg2Ni2] tetrahedra.
ILL-ESRF publication... arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/4/3198/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10072/124971Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8043198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ILL-ESRF publication... arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/4/3198/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10072/124971Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8043198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Australia, Norway, Norway, NorwayPublisher:MDPI AG Funded by:RCN | NOVEL MAGNESIUM BASED NAN...RCN| NOVEL MAGNESIUM BASED NANOMATERIALS FOR ADVANCED RECHARGEABLE BATTERIESAuthors: Denys, Roman V; Yartys, Volodymyr A; Gray, Evan MacA; Webb, Colin J;doi: 10.3390/en8043198
handle: 11250/2356290 , 11250/2364797 , 10072/124971
This work focused on the high pressure PCT and in situ neutron powder diffraction studies of the LaMg2Ni9-H2 (D2) system at pressures up to 1,000 bar. LaMg2Ni9 alloy was prepared by a powder metallurgy route from the LaNi9 alloy precursor and Mg powder. Two La3−xMgxNi9 samples with slightly different La/Mg ratios were studied, La1.1Mg1.9Ni9 (sample 1) and La0.9Mg2.1Ni9 (sample 2). In situ neutron powder diffraction studies of the La1.09Mg1.91Ni9D9.5 (1) and La0.91Mg2.09Ni9D9.4 (2) deuterides were performed at 25 bar D2 (1) and 918 bar D2 (2). The hydrogenation properties of the (1) and (2) are dramatically different from those for LaNi3. The Mg-containing intermetallics reversibly form hydrides with DHdes = 24.0 kJ/molH2 and an equilibrium pressure of H2 desorption of 18 bar at 20 °C (La1.09Mg1.91Ni9). A pronounced hysteresis of H2 absorption and desorption, ~100 bar, is observed. The studies showed that LaNi5-assisted hydrogenation of MgNi2 in the LaMg2Ni9 hybrid structure takes place. In the La1.09Mg1.91Ni9D9.5 (1) and La0.91Mg2.09Ni9D9.4 (2) (a = 5.263/5.212; c = 25.803/25.71 Å) D atoms are accommodated in both Laves and CaCu5-type slabs. In the LaNi5 CaCu5-type layer, D atoms fill three types of interstices; a deformed octahedron [La2Ni4], and [La(Mg)2Ni2] and [Ni4] tetrahedra. The overall chemical compositions can be presented as LaNi5H5.6/5.0 + 2*MgNi2H1.95/2.2 showing that the hydrogenation of the MgNi2 slab proceeds at mild H2/D2 pressure of just 20 bar. A partial filling by D of the four types of the tetrahedral interstices in the MgNi2 slab takes place, including [MgNi3] and [Mg2Ni2] tetrahedra.
ILL-ESRF publication... arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/4/3198/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10072/124971Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8043198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ILL-ESRF publication... arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/4/3198/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10072/124971Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8043198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Mykhaylo Lototskyy; Robert C. Bowman; Bruno G. Pollet; Volodymyr A. Yartys;AbstractMetal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine – the metal hydride material itself – should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal–hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimised to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation.The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal–hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2014License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.01.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 415 citations 415 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2014License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.01.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Mykhaylo Lototskyy; Robert C. Bowman; Bruno G. Pollet; Volodymyr A. Yartys;AbstractMetal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine – the metal hydride material itself – should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal–hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimised to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation.The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal–hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2014License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.01.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 415 citations 415 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2014License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.01.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2020 Denmark, Norway, South Africa, Belgium, Australia, France, Netherlands, Norway, Denmark, Australia, Italy, Denmark, Australia, ItalyPublisher:Elsevier BV Funded by:EC | HYDRIDE4MOBILITY, RCN | SET 11: New IEA Task ENER...EC| HYDRIDE4MOBILITY ,RCN| SET 11: New IEA Task ENERGY STORAGE AND CONVERSION BASED ON HYDROGENSangryun Kim; Marcello Baricco; Terry D. Humphries; Dag Noréus; Martin Dornheim; Craig E. Buckley; Petra E. de Jongh; David M. Grant; Ping Chen; Shin Ichi Orimo; Fermin Cuevas; William I. F. David; William I. F. David; Dorthe Bomholdt Ravnsbæk; Peter Ngene; Yaroslav Filinchuk; Michael Felderhoff; Michel Latroche; M. Veronica Sofianos; Terrence J. Udovic; Joshua W. Makepeace; Hai Wen Li; Teng He; Kasper T. Møller; Torben R. Jensen; Lubna Naheed; Jean-Claude Crivello; Young Whan Cho; Didier Blanchard; George E. Froudakis; Michael Hirscher; Colin J. Webb; Claudia Weidenthaler; José M. Bellosta von Colbe; Volodymyr A. Yartys; Tejs Vegge; Evan Gray; Luca Pasquini; Gavin S. Walker; Claudia Zlotea; Mark Paskevicius; Robert C. Bowman; Mykhaylo Lototskyy; Yoshitsugu Kojima; Darren P. Broom; Fei Chang; Magnus Moe Nygård; Roman V. Denys; Bjørn C. Hauback;handle: 2078.1/231507 , 11250/2646540 , 11585/752698 , 2318/1740145 , 20.500.11937/82257 , 10566/5465 , 10072/398791
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The Magnesium group of international experts contributing to IEA Task 32 Hydrogen Based Energy Storage recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications, but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures, kinetics and thermodynamics of the systems based on MgH2,nanostructuring, new Mg-based compounds and novel composites, and catalysis in the Mg based H storage systems. Finally, thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/398791Data sources: Bielefeld Academic Search Engine (BASE)Journal of Alloys and CompoundsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: Pure Utrecht UniversityOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: University of Southern Denmark Research Outputhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteJournal of Alloys and CompoundsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2019.153548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 694 citations 694 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/398791Data sources: Bielefeld Academic Search Engine (BASE)Journal of Alloys and CompoundsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: Pure Utrecht UniversityOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: University of Southern Denmark Research Outputhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteJournal of Alloys and CompoundsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2019.153548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2020 Denmark, Norway, South Africa, Belgium, Australia, France, Netherlands, Norway, Denmark, Australia, Italy, Denmark, Australia, ItalyPublisher:Elsevier BV Funded by:EC | HYDRIDE4MOBILITY, RCN | SET 11: New IEA Task ENER...EC| HYDRIDE4MOBILITY ,RCN| SET 11: New IEA Task ENERGY STORAGE AND CONVERSION BASED ON HYDROGENSangryun Kim; Marcello Baricco; Terry D. Humphries; Dag Noréus; Martin Dornheim; Craig E. Buckley; Petra E. de Jongh; David M. Grant; Ping Chen; Shin Ichi Orimo; Fermin Cuevas; William I. F. David; William I. F. David; Dorthe Bomholdt Ravnsbæk; Peter Ngene; Yaroslav Filinchuk; Michael Felderhoff; Michel Latroche; M. Veronica Sofianos; Terrence J. Udovic; Joshua W. Makepeace; Hai Wen Li; Teng He; Kasper T. Møller; Torben R. Jensen; Lubna Naheed; Jean-Claude Crivello; Young Whan Cho; Didier Blanchard; George E. Froudakis; Michael Hirscher; Colin J. Webb; Claudia Weidenthaler; José M. Bellosta von Colbe; Volodymyr A. Yartys; Tejs Vegge; Evan Gray; Luca Pasquini; Gavin S. Walker; Claudia Zlotea; Mark Paskevicius; Robert C. Bowman; Mykhaylo Lototskyy; Yoshitsugu Kojima; Darren P. Broom; Fei Chang; Magnus Moe Nygård; Roman V. Denys; Bjørn C. Hauback;handle: 2078.1/231507 , 11250/2646540 , 11585/752698 , 2318/1740145 , 20.500.11937/82257 , 10566/5465 , 10072/398791
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The Magnesium group of international experts contributing to IEA Task 32 Hydrogen Based Energy Storage recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications, but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures, kinetics and thermodynamics of the systems based on MgH2,nanostructuring, new Mg-based compounds and novel composites, and catalysis in the Mg based H storage systems. Finally, thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/398791Data sources: Bielefeld Academic Search Engine (BASE)Journal of Alloys and CompoundsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: Pure Utrecht UniversityOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: University of Southern Denmark Research Outputhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteJournal of Alloys and CompoundsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2019.153548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 694 citations 694 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/398791Data sources: Bielefeld Academic Search Engine (BASE)Journal of Alloys and CompoundsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: Pure Utrecht UniversityOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: University of Southern Denmark Research Outputhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteJournal of Alloys and CompoundsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2019.153548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 South AfricaPublisher:Elsevier BV Boris P. Tarasov; Pavel V. Fursikov; Alexey A. Volodin; Mikhail S. Bocharnikov; Yustinas Ya Shimkus; Aleksey M. Kashin; Volodymyr A. Yartys; Stanford Chidziva; Sivakumar Pasupathi; Mykhaylo V. Lototskyy;handle: 10566/6048
Abstract Along with a brief overview of literature data on energy storage technologies utilising hydrogen and metal hydrides, this article presents results of the related R&D activities carried out by the authors. The focus is put on proper selection of metal hydride materials on the basis of AB5- and AB2-type intermetallic compounds for hydrogen storage and compression applications, based on the analysis of PCT properties of the materials in systems with H2 gas. The article also presents features of integrated energy storage systems utilising metal hydride hydrogen storage and compression, as well as their metal hydride based components developed at IPCP and HySA Systems.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of the Western Cap: UWC Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2020.07.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 289 citations 289 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of the Western Cap: UWC Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2020.07.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 South AfricaPublisher:Elsevier BV Boris P. Tarasov; Pavel V. Fursikov; Alexey A. Volodin; Mikhail S. Bocharnikov; Yustinas Ya Shimkus; Aleksey M. Kashin; Volodymyr A. Yartys; Stanford Chidziva; Sivakumar Pasupathi; Mykhaylo V. Lototskyy;handle: 10566/6048
Abstract Along with a brief overview of literature data on energy storage technologies utilising hydrogen and metal hydrides, this article presents results of the related R&D activities carried out by the authors. The focus is put on proper selection of metal hydride materials on the basis of AB5- and AB2-type intermetallic compounds for hydrogen storage and compression applications, based on the analysis of PCT properties of the materials in systems with H2 gas. The article also presents features of integrated energy storage systems utilising metal hydride hydrogen storage and compression, as well as their metal hydride based components developed at IPCP and HySA Systems.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of the Western Cap: UWC Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2020.07.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 289 citations 289 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of the Western Cap: UWC Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2020.07.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, Norway, SpainPublisher:IOP Publishing Funded by:EC | HyCARE, EC | HYDRIDE4MOBILITYEC| HyCARE ,EC| HYDRIDE4MOBILITYMartin Dornheim; Lars Baetcke; Etsuo Akiba; Jose-Ramón Ares; Tom Autrey; Jussara Barale; Marcello Baricco; Kriston Brooks; Nikolaos Chalkiadakis; Véronique Charbonnier; Steven Christensen; José Bellosta von Colbe; Mattia Costamagna; Erika Dematteis; Jose-Francisco Fernández; Thomas Gennett; David Grant; Tae Wook Heo; Michael Hirscher; Katherine Hurst; Mykhaylo Lototskyy; Oliver Metz; Paola Rizzi; Kouji Sakaki; Sabrina Sartori; Emmanuel Stamatakis; Alastair Stuart; Athanasios Stubos; Gavin Walker; Colin J Webb; Brandon Wood; Volodymyr Yartys; Emmanuel Zoulias;handle: 11250/3025081 , 10852/97224 , 10486/706672 , 2318/1879084
Abstract Industrial and public interest in hydrogen technologies has risen strongly recently, as hydrogen is the ideal means for medium to long term energy storage, transport and usage in combination with renewable and green energy supply. In a future energy system, the production, storage and usage of green hydrogen is a key technology. Hydrogen is and will in future be even more used for industrial production processes as a reduction agent or for the production of synthetic hydrocarbons, especially in the chemical industry and in refineries. Under certain conditions material based systems for hydrogen storage and compression offer advantages over the classical systems based on gaseous or liquid hydrogen. This includes in particular lower maintenance costs, higher reliability and safety. Hydrogen storage is possible at pressures and temperatures much closer to ambient conditions. Hydrogen compression is possible without any moving parts and only by using waste heat. In this paper, we summarize the newest developments of hydrogen carriers for storage and compression and in addition, give an overview of the different research activities in this field.
Archivio Istituziona... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/97224Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ac7cb7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 67visibility views 67 download downloads 17 Powered bymore_vert Archivio Istituziona... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/97224Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ac7cb7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, Norway, SpainPublisher:IOP Publishing Funded by:EC | HyCARE, EC | HYDRIDE4MOBILITYEC| HyCARE ,EC| HYDRIDE4MOBILITYMartin Dornheim; Lars Baetcke; Etsuo Akiba; Jose-Ramón Ares; Tom Autrey; Jussara Barale; Marcello Baricco; Kriston Brooks; Nikolaos Chalkiadakis; Véronique Charbonnier; Steven Christensen; José Bellosta von Colbe; Mattia Costamagna; Erika Dematteis; Jose-Francisco Fernández; Thomas Gennett; David Grant; Tae Wook Heo; Michael Hirscher; Katherine Hurst; Mykhaylo Lototskyy; Oliver Metz; Paola Rizzi; Kouji Sakaki; Sabrina Sartori; Emmanuel Stamatakis; Alastair Stuart; Athanasios Stubos; Gavin Walker; Colin J Webb; Brandon Wood; Volodymyr Yartys; Emmanuel Zoulias;handle: 11250/3025081 , 10852/97224 , 10486/706672 , 2318/1879084
Abstract Industrial and public interest in hydrogen technologies has risen strongly recently, as hydrogen is the ideal means for medium to long term energy storage, transport and usage in combination with renewable and green energy supply. In a future energy system, the production, storage and usage of green hydrogen is a key technology. Hydrogen is and will in future be even more used for industrial production processes as a reduction agent or for the production of synthetic hydrocarbons, especially in the chemical industry and in refineries. Under certain conditions material based systems for hydrogen storage and compression offer advantages over the classical systems based on gaseous or liquid hydrogen. This includes in particular lower maintenance costs, higher reliability and safety. Hydrogen storage is possible at pressures and temperatures much closer to ambient conditions. Hydrogen compression is possible without any moving parts and only by using waste heat. In this paper, we summarize the newest developments of hydrogen carriers for storage and compression and in addition, give an overview of the different research activities in this field.
Archivio Istituziona... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/97224Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ac7cb7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 67visibility views 67 download downloads 17 Powered bymore_vert Archivio Istituziona... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/97224Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ac7cb7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IOP Publishing V Yartys; I Zavaliy; V Berezovets; Yu Pirskyy; F Manilevich; A Kytsya; Yu Verbovytskyy; Yu Dubov; A Kutsyi;Abstract An autonomous power supply device based on a 30 W fuel cell (FC) stack and a hydrolysis-type hydrogen generator was developed. The creation of this device included the construction of a unit for hydrogen generation, development of an electronic control unit for the operation of the device, and testing and optimizing the overall performance. The hydrolysis of NaBH4 was catalyzed by Pt-based catalysts and was studied for different reactor configurations and reagent concentrations. The flat type of the reactor, Pt catalyst deposited on cordierite as a support, and 10% solution of NaBH4 proved to be the most efficient when generating H2 for use in the 30 W FC. A developed electronic control unit effectively regulates the hydrolysis reaction rate and provides the required hydrogen supply to the FC. A Li-ion battery was used to start the work of the developed system. One important feature of the developed electronic system is the use of supercapacitors, enabling smoothening of the periodic variations of the generated power. The created hydrolysis unit integrated with the FC provides a stable power supply for at least 9 h from one refueling (U const = 12 V, I = 0–2.5 A, nominal power = 30 W). The specific generated power of the system when accounting for its weight and volume is similar to the analogues described in the reference data, while the electronic circuit enables its stable and efficient performance, satisfying the consumer needs for autonomous energy supply when a stationary electrical grid is not available.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/acab2d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/acab2d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IOP Publishing V Yartys; I Zavaliy; V Berezovets; Yu Pirskyy; F Manilevich; A Kytsya; Yu Verbovytskyy; Yu Dubov; A Kutsyi;Abstract An autonomous power supply device based on a 30 W fuel cell (FC) stack and a hydrolysis-type hydrogen generator was developed. The creation of this device included the construction of a unit for hydrogen generation, development of an electronic control unit for the operation of the device, and testing and optimizing the overall performance. The hydrolysis of NaBH4 was catalyzed by Pt-based catalysts and was studied for different reactor configurations and reagent concentrations. The flat type of the reactor, Pt catalyst deposited on cordierite as a support, and 10% solution of NaBH4 proved to be the most efficient when generating H2 for use in the 30 W FC. A developed electronic control unit effectively regulates the hydrolysis reaction rate and provides the required hydrogen supply to the FC. A Li-ion battery was used to start the work of the developed system. One important feature of the developed electronic system is the use of supercapacitors, enabling smoothening of the periodic variations of the generated power. The created hydrolysis unit integrated with the FC provides a stable power supply for at least 9 h from one refueling (U const = 12 V, I = 0–2.5 A, nominal power = 30 W). The specific generated power of the system when accounting for its weight and volume is similar to the analogues described in the reference data, while the electronic circuit enables its stable and efficient performance, satisfying the consumer needs for autonomous energy supply when a stationary electrical grid is not available.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/acab2d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/acab2d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NorwayPublisher:MDPI AG Kwo-Hsiung Young; Jean Nei; Chubin Wan; Roman Denys; Volodymyr Yartys;handle: 11250/2470375 , 11250/2460328
Herein, we present a comparison of the electrochemical hydrogen-storage characteristics of two state-of-art Laves phase-based metal hydride alloys (Zr21.5Ti12.0V10.0Cr7.5Mn8.1Co8.0Ni32.2Sn0.3Al0.4 vs. Zr25.0Ti6.5V3.9Mn22.2Fe3.8Ni38.0La0.3) prepared by induction melting and hydrogen decrepitation. The relatively high contents of lighter transition metals (V and Cr) in the first composition results in an average electron density below the C14/C15 threshold ( e / a ~ 6.9 ) and produces a C14-predominated structure, while the average electron density of the second composition is above the C14/C15 threshold and results in a C15-predominated structure. From a combination of variations in composition, main phase structure, and degree of homogeneity, the C14-predominated alloy exhibits higher storage capacities (in both the gaseous phase and electrochemical environment), a slower activation, inferior high-rate discharge, and low-temperature performances, and a better cycle stability compared to the C15-predominated alloy. The superiority in high-rate dischargeability in the C15-predominated alloy is mainly due to its larger reactive surface area. Annealing of the C15-predominated alloy eliminates the ZrNi secondary phase completely and changes the composition of the La-containing secondary phase. While the former change sacrifices the synergetic effects, and degrades the hydrogen storage performance, the latter may contribute to the unchanged surface catalytic ability, even with a reduction in total volume of metallic nickel clusters embedded in the activated surface oxide layer. In general, the C14-predominated alloy is more suitable for high-capacity and long cycle life applications, and the C15-predominated alloy can be used in areas requiring easy activation, and better high-rate and low-temperature performances.
Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/3/22/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3030022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/3/22/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3030022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NorwayPublisher:MDPI AG Kwo-Hsiung Young; Jean Nei; Chubin Wan; Roman Denys; Volodymyr Yartys;handle: 11250/2470375 , 11250/2460328
Herein, we present a comparison of the electrochemical hydrogen-storage characteristics of two state-of-art Laves phase-based metal hydride alloys (Zr21.5Ti12.0V10.0Cr7.5Mn8.1Co8.0Ni32.2Sn0.3Al0.4 vs. Zr25.0Ti6.5V3.9Mn22.2Fe3.8Ni38.0La0.3) prepared by induction melting and hydrogen decrepitation. The relatively high contents of lighter transition metals (V and Cr) in the first composition results in an average electron density below the C14/C15 threshold ( e / a ~ 6.9 ) and produces a C14-predominated structure, while the average electron density of the second composition is above the C14/C15 threshold and results in a C15-predominated structure. From a combination of variations in composition, main phase structure, and degree of homogeneity, the C14-predominated alloy exhibits higher storage capacities (in both the gaseous phase and electrochemical environment), a slower activation, inferior high-rate discharge, and low-temperature performances, and a better cycle stability compared to the C15-predominated alloy. The superiority in high-rate dischargeability in the C15-predominated alloy is mainly due to its larger reactive surface area. Annealing of the C15-predominated alloy eliminates the ZrNi secondary phase completely and changes the composition of the La-containing secondary phase. While the former change sacrifices the synergetic effects, and degrades the hydrogen storage performance, the latter may contribute to the unchanged surface catalytic ability, even with a reduction in total volume of metallic nickel clusters embedded in the activated surface oxide layer. In general, the C14-predominated alloy is more suitable for high-capacity and long cycle life applications, and the C15-predominated alloy can be used in areas requiring easy activation, and better high-rate and low-temperature performances.
Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/3/22/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3030022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/3/22/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3030022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2005 ItalyPublisher:Springer Science and Business Media LLC PALADE, PETRU; PRINCIPI, GIOVANNI; SPATARU, TUDOR; P. BLAHA; K. SCHWARZ; V. KUNCSER; LO RUSSO, SERGIO; S. DAL TOE'; V. A. YARTYS;handle: 11577/2435143
LaNiSn and NdNiSn compounds and their deuterides have been studied by variable temperature 119Sn Mossbauer spectroscopy. The hyperfine parameters obtained experimentally are in good agreement with those derived from first principle calculations. The enlargement of quadrupole splitting observed for LaNiSn after deuteration confirms the lower symmetry of electron density around tin atoms indicated by the calculation of partial Sn-p density of states (DOS). Magnetic ordering is observed at low temperature in deuterided NdNiSn.
Journal of Radioanal... arrow_drop_down Journal of Radioanalytical and Nuclear ChemistryArticle . 2005 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10967-005-0947-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Radioanal... arrow_drop_down Journal of Radioanalytical and Nuclear ChemistryArticle . 2005 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10967-005-0947-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 ItalyPublisher:Springer Science and Business Media LLC PALADE, PETRU; PRINCIPI, GIOVANNI; SPATARU, TUDOR; P. BLAHA; K. SCHWARZ; V. KUNCSER; LO RUSSO, SERGIO; S. DAL TOE'; V. A. YARTYS;handle: 11577/2435143
LaNiSn and NdNiSn compounds and their deuterides have been studied by variable temperature 119Sn Mossbauer spectroscopy. The hyperfine parameters obtained experimentally are in good agreement with those derived from first principle calculations. The enlargement of quadrupole splitting observed for LaNiSn after deuteration confirms the lower symmetry of electron density around tin atoms indicated by the calculation of partial Sn-p density of states (DOS). Magnetic ordering is observed at low temperature in deuterided NdNiSn.
Journal of Radioanal... arrow_drop_down Journal of Radioanalytical and Nuclear ChemistryArticle . 2005 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10967-005-0947-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Radioanal... arrow_drop_down Journal of Radioanalytical and Nuclear ChemistryArticle . 2005 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10967-005-0947-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NorwayPublisher:MDPI AG Kwo-Hsiung Young; John Koch; Chubin Wan; Roman Denys; Volodymyr Yartys;handle: 11250/2460274 , 11250/2469288
The performance of cylindrical cells made from negative electrode active materials of two selected AB2 metal hydride chemistries with different dominating Laves phases (C14 vs. C15) were compared. Cells made from Alloy C15 showed a higher high-rate performance and peak power with a corresponding sacrifice in capacity, low-temperature performance, charge retention, and cycle life when compared with the C14 counterpart (Alloy C14). Annealing of the Alloy C15 eliminated the ZrNi secondary phase and further improved the high-rate and peak power performance. This treatment on Alloy C15 showed the best low-temperature performance, but also contributed to a less-desirable high-temperature voltage stand and an inferior cycle stability. While the main failure mode for Alloy C14 in the sealed cell is the formation of a thick oxide layer that prevents gas recombination during overcharge and consequent venting of the cell, the failure mode for Alloy C15 is dominated by continuous pulverization related to the volumetric changes during hydride formation and hysteresis in the pressure-composition-temperature isotherm. The leached-out Mn from Alloy C15 formed a high density of oxide deposits in the separator, leading to a deterioration in charge retention performance. Large amounts of Zr were found in the positive electrode of the cycled cell containing Alloy C15, but did not appear to harm cell performance. Suggestions for further composition and process optimization for Alloy C15 are also provided.
Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/4/29/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3040029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/4/29/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3040029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NorwayPublisher:MDPI AG Kwo-Hsiung Young; John Koch; Chubin Wan; Roman Denys; Volodymyr Yartys;handle: 11250/2460274 , 11250/2469288
The performance of cylindrical cells made from negative electrode active materials of two selected AB2 metal hydride chemistries with different dominating Laves phases (C14 vs. C15) were compared. Cells made from Alloy C15 showed a higher high-rate performance and peak power with a corresponding sacrifice in capacity, low-temperature performance, charge retention, and cycle life when compared with the C14 counterpart (Alloy C14). Annealing of the Alloy C15 eliminated the ZrNi secondary phase and further improved the high-rate and peak power performance. This treatment on Alloy C15 showed the best low-temperature performance, but also contributed to a less-desirable high-temperature voltage stand and an inferior cycle stability. While the main failure mode for Alloy C14 in the sealed cell is the formation of a thick oxide layer that prevents gas recombination during overcharge and consequent venting of the cell, the failure mode for Alloy C15 is dominated by continuous pulverization related to the volumetric changes during hydride formation and hysteresis in the pressure-composition-temperature isotherm. The leached-out Mn from Alloy C15 formed a high density of oxide deposits in the separator, leading to a deterioration in charge retention performance. Large amounts of Zr were found in the positive electrode of the cycled cell containing Alloy C15, but did not appear to harm cell performance. Suggestions for further composition and process optimization for Alloy C15 are also provided.
Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/4/29/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3040029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/4/29/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3040029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SerbiaPublisher:Elsevier BV Jing Yao; Leilei Guo; Pengfei Zhu; Fusheng Yang; Hongli Yan; Sandra Kurko; Volodymyr A. Yartys; Zaoxiao Zhang; Zhen Wu;Abstract Desalination is an important method to take full advantage of the sea water to produce fresh water. However, the systems or devices reported previously still have the limitations in the energy supply and portability when used in some specific application scenarios, such as island and remote coastal area. In this paper, a multi-function desalination system is proposed, which could provide fresh water, electrical energy, and even the cold energy based on the hydrolysis reaction of hydride and fuel cell water recovery. Besides, the system could be modified to increase the flexibility of the system operation to satisfy the various energy demands under different conditions. A lumped parameter model of the proposed system is developed to evaluate the system performance. The results show that the fuel cell helps to increase the absolute humidity of the wet air by 15.5% and to increase the water production by condensing the wet air by 1.8 times compared with simple water harvest from the ambient environment. The modified system demonstrates more stable performance of the water production than the original desalination system, which means that the modified system is less affected by the parameter variation. The maximum water production of the kW level system could achieve 11.10 kg/h. Comparing with the previous reports, the unit power consumption of the modified system could reach the lowest level (about 880 Wh/kg), showing the promising water production performance of the system developed in this work.
VinaR - Repository o... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 35visibility views 35 Powered bymore_vert VinaR - Repository o... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SerbiaPublisher:Elsevier BV Jing Yao; Leilei Guo; Pengfei Zhu; Fusheng Yang; Hongli Yan; Sandra Kurko; Volodymyr A. Yartys; Zaoxiao Zhang; Zhen Wu;Abstract Desalination is an important method to take full advantage of the sea water to produce fresh water. However, the systems or devices reported previously still have the limitations in the energy supply and portability when used in some specific application scenarios, such as island and remote coastal area. In this paper, a multi-function desalination system is proposed, which could provide fresh water, electrical energy, and even the cold energy based on the hydrolysis reaction of hydride and fuel cell water recovery. Besides, the system could be modified to increase the flexibility of the system operation to satisfy the various energy demands under different conditions. A lumped parameter model of the proposed system is developed to evaluate the system performance. The results show that the fuel cell helps to increase the absolute humidity of the wet air by 15.5% and to increase the water production by condensing the wet air by 1.8 times compared with simple water harvest from the ambient environment. The modified system demonstrates more stable performance of the water production than the original desalination system, which means that the modified system is less affected by the parameter variation. The maximum water production of the kW level system could achieve 11.10 kg/h. Comparing with the previous reports, the unit power consumption of the modified system could reach the lowest level (about 880 Wh/kg), showing the promising water production performance of the system developed in this work.
VinaR - Repository o... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 35visibility views 35 Powered bymore_vert VinaR - Repository o... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Australia, Norway, Norway, NorwayPublisher:MDPI AG Funded by:RCN | NOVEL MAGNESIUM BASED NAN...RCN| NOVEL MAGNESIUM BASED NANOMATERIALS FOR ADVANCED RECHARGEABLE BATTERIESAuthors: Denys, Roman V; Yartys, Volodymyr A; Gray, Evan MacA; Webb, Colin J;doi: 10.3390/en8043198
handle: 11250/2356290 , 11250/2364797 , 10072/124971
This work focused on the high pressure PCT and in situ neutron powder diffraction studies of the LaMg2Ni9-H2 (D2) system at pressures up to 1,000 bar. LaMg2Ni9 alloy was prepared by a powder metallurgy route from the LaNi9 alloy precursor and Mg powder. Two La3−xMgxNi9 samples with slightly different La/Mg ratios were studied, La1.1Mg1.9Ni9 (sample 1) and La0.9Mg2.1Ni9 (sample 2). In situ neutron powder diffraction studies of the La1.09Mg1.91Ni9D9.5 (1) and La0.91Mg2.09Ni9D9.4 (2) deuterides were performed at 25 bar D2 (1) and 918 bar D2 (2). The hydrogenation properties of the (1) and (2) are dramatically different from those for LaNi3. The Mg-containing intermetallics reversibly form hydrides with DHdes = 24.0 kJ/molH2 and an equilibrium pressure of H2 desorption of 18 bar at 20 °C (La1.09Mg1.91Ni9). A pronounced hysteresis of H2 absorption and desorption, ~100 bar, is observed. The studies showed that LaNi5-assisted hydrogenation of MgNi2 in the LaMg2Ni9 hybrid structure takes place. In the La1.09Mg1.91Ni9D9.5 (1) and La0.91Mg2.09Ni9D9.4 (2) (a = 5.263/5.212; c = 25.803/25.71 Å) D atoms are accommodated in both Laves and CaCu5-type slabs. In the LaNi5 CaCu5-type layer, D atoms fill three types of interstices; a deformed octahedron [La2Ni4], and [La(Mg)2Ni2] and [Ni4] tetrahedra. The overall chemical compositions can be presented as LaNi5H5.6/5.0 + 2*MgNi2H1.95/2.2 showing that the hydrogenation of the MgNi2 slab proceeds at mild H2/D2 pressure of just 20 bar. A partial filling by D of the four types of the tetrahedral interstices in the MgNi2 slab takes place, including [MgNi3] and [Mg2Ni2] tetrahedra.
ILL-ESRF publication... arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/4/3198/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10072/124971Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8043198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ILL-ESRF publication... arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/4/3198/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10072/124971Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8043198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Australia, Norway, Norway, NorwayPublisher:MDPI AG Funded by:RCN | NOVEL MAGNESIUM BASED NAN...RCN| NOVEL MAGNESIUM BASED NANOMATERIALS FOR ADVANCED RECHARGEABLE BATTERIESAuthors: Denys, Roman V; Yartys, Volodymyr A; Gray, Evan MacA; Webb, Colin J;doi: 10.3390/en8043198
handle: 11250/2356290 , 11250/2364797 , 10072/124971
This work focused on the high pressure PCT and in situ neutron powder diffraction studies of the LaMg2Ni9-H2 (D2) system at pressures up to 1,000 bar. LaMg2Ni9 alloy was prepared by a powder metallurgy route from the LaNi9 alloy precursor and Mg powder. Two La3−xMgxNi9 samples with slightly different La/Mg ratios were studied, La1.1Mg1.9Ni9 (sample 1) and La0.9Mg2.1Ni9 (sample 2). In situ neutron powder diffraction studies of the La1.09Mg1.91Ni9D9.5 (1) and La0.91Mg2.09Ni9D9.4 (2) deuterides were performed at 25 bar D2 (1) and 918 bar D2 (2). The hydrogenation properties of the (1) and (2) are dramatically different from those for LaNi3. The Mg-containing intermetallics reversibly form hydrides with DHdes = 24.0 kJ/molH2 and an equilibrium pressure of H2 desorption of 18 bar at 20 °C (La1.09Mg1.91Ni9). A pronounced hysteresis of H2 absorption and desorption, ~100 bar, is observed. The studies showed that LaNi5-assisted hydrogenation of MgNi2 in the LaMg2Ni9 hybrid structure takes place. In the La1.09Mg1.91Ni9D9.5 (1) and La0.91Mg2.09Ni9D9.4 (2) (a = 5.263/5.212; c = 25.803/25.71 Å) D atoms are accommodated in both Laves and CaCu5-type slabs. In the LaNi5 CaCu5-type layer, D atoms fill three types of interstices; a deformed octahedron [La2Ni4], and [La(Mg)2Ni2] and [Ni4] tetrahedra. The overall chemical compositions can be presented as LaNi5H5.6/5.0 + 2*MgNi2H1.95/2.2 showing that the hydrogenation of the MgNi2 slab proceeds at mild H2/D2 pressure of just 20 bar. A partial filling by D of the four types of the tetrahedral interstices in the MgNi2 slab takes place, including [MgNi3] and [Mg2Ni2] tetrahedra.
ILL-ESRF publication... arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/4/3198/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10072/124971Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8043198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ILL-ESRF publication... arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/4/3198/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10072/124971Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8043198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Mykhaylo Lototskyy; Robert C. Bowman; Bruno G. Pollet; Volodymyr A. Yartys;AbstractMetal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine – the metal hydride material itself – should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal–hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimised to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation.The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal–hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2014License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.01.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 415 citations 415 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2014License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.01.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Mykhaylo Lototskyy; Robert C. Bowman; Bruno G. Pollet; Volodymyr A. Yartys;AbstractMetal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine – the metal hydride material itself – should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal–hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimised to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation.The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal–hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2014License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.01.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 415 citations 415 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2014License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.01.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2020 Denmark, Norway, South Africa, Belgium, Australia, France, Netherlands, Norway, Denmark, Australia, Italy, Denmark, Australia, ItalyPublisher:Elsevier BV Funded by:EC | HYDRIDE4MOBILITY, RCN | SET 11: New IEA Task ENER...EC| HYDRIDE4MOBILITY ,RCN| SET 11: New IEA Task ENERGY STORAGE AND CONVERSION BASED ON HYDROGENSangryun Kim; Marcello Baricco; Terry D. Humphries; Dag Noréus; Martin Dornheim; Craig E. Buckley; Petra E. de Jongh; David M. Grant; Ping Chen; Shin Ichi Orimo; Fermin Cuevas; William I. F. David; William I. F. David; Dorthe Bomholdt Ravnsbæk; Peter Ngene; Yaroslav Filinchuk; Michael Felderhoff; Michel Latroche; M. Veronica Sofianos; Terrence J. Udovic; Joshua W. Makepeace; Hai Wen Li; Teng He; Kasper T. Møller; Torben R. Jensen; Lubna Naheed; Jean-Claude Crivello; Young Whan Cho; Didier Blanchard; George E. Froudakis; Michael Hirscher; Colin J. Webb; Claudia Weidenthaler; José M. Bellosta von Colbe; Volodymyr A. Yartys; Tejs Vegge; Evan Gray; Luca Pasquini; Gavin S. Walker; Claudia Zlotea; Mark Paskevicius; Robert C. Bowman; Mykhaylo Lototskyy; Yoshitsugu Kojima; Darren P. Broom; Fei Chang; Magnus Moe Nygård; Roman V. Denys; Bjørn C. Hauback;handle: 2078.1/231507 , 11250/2646540 , 11585/752698 , 2318/1740145 , 20.500.11937/82257 , 10566/5465 , 10072/398791
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The Magnesium group of international experts contributing to IEA Task 32 Hydrogen Based Energy Storage recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications, but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures, kinetics and thermodynamics of the systems based on MgH2,nanostructuring, new Mg-based compounds and novel composites, and catalysis in the Mg based H storage systems. Finally, thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/398791Data sources: Bielefeld Academic Search Engine (BASE)Journal of Alloys and CompoundsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: Pure Utrecht UniversityOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: University of Southern Denmark Research Outputhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteJournal of Alloys and CompoundsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2019.153548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 694 citations 694 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/398791Data sources: Bielefeld Academic Search Engine (BASE)Journal of Alloys and CompoundsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: Pure Utrecht UniversityOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: University of Southern Denmark Research Outputhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteJournal of Alloys and CompoundsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2019.153548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2020 Denmark, Norway, South Africa, Belgium, Australia, France, Netherlands, Norway, Denmark, Australia, Italy, Denmark, Australia, ItalyPublisher:Elsevier BV Funded by:EC | HYDRIDE4MOBILITY, RCN | SET 11: New IEA Task ENER...EC| HYDRIDE4MOBILITY ,RCN| SET 11: New IEA Task ENERGY STORAGE AND CONVERSION BASED ON HYDROGENSangryun Kim; Marcello Baricco; Terry D. Humphries; Dag Noréus; Martin Dornheim; Craig E. Buckley; Petra E. de Jongh; David M. Grant; Ping Chen; Shin Ichi Orimo; Fermin Cuevas; William I. F. David; William I. F. David; Dorthe Bomholdt Ravnsbæk; Peter Ngene; Yaroslav Filinchuk; Michael Felderhoff; Michel Latroche; M. Veronica Sofianos; Terrence J. Udovic; Joshua W. Makepeace; Hai Wen Li; Teng He; Kasper T. Møller; Torben R. Jensen; Lubna Naheed; Jean-Claude Crivello; Young Whan Cho; Didier Blanchard; George E. Froudakis; Michael Hirscher; Colin J. Webb; Claudia Weidenthaler; José M. Bellosta von Colbe; Volodymyr A. Yartys; Tejs Vegge; Evan Gray; Luca Pasquini; Gavin S. Walker; Claudia Zlotea; Mark Paskevicius; Robert C. Bowman; Mykhaylo Lototskyy; Yoshitsugu Kojima; Darren P. Broom; Fei Chang; Magnus Moe Nygård; Roman V. Denys; Bjørn C. Hauback;handle: 2078.1/231507 , 11250/2646540 , 11585/752698 , 2318/1740145 , 20.500.11937/82257 , 10566/5465 , 10072/398791
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The Magnesium group of international experts contributing to IEA Task 32 Hydrogen Based Energy Storage recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications, but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures, kinetics and thermodynamics of the systems based on MgH2,nanostructuring, new Mg-based compounds and novel composites, and catalysis in the Mg based H storage systems. Finally, thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/398791Data sources: Bielefeld Academic Search Engine (BASE)Journal of Alloys and CompoundsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: Pure Utrecht UniversityOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: University of Southern Denmark Research Outputhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteJournal of Alloys and CompoundsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2019.153548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 694 citations 694 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/398791Data sources: Bielefeld Academic Search Engine (BASE)Journal of Alloys and CompoundsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: Pure Utrecht UniversityOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: University of Southern Denmark Research Outputhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteJournal of Alloys and CompoundsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2019.153548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 South AfricaPublisher:Elsevier BV Boris P. Tarasov; Pavel V. Fursikov; Alexey A. Volodin; Mikhail S. Bocharnikov; Yustinas Ya Shimkus; Aleksey M. Kashin; Volodymyr A. Yartys; Stanford Chidziva; Sivakumar Pasupathi; Mykhaylo V. Lototskyy;handle: 10566/6048
Abstract Along with a brief overview of literature data on energy storage technologies utilising hydrogen and metal hydrides, this article presents results of the related R&D activities carried out by the authors. The focus is put on proper selection of metal hydride materials on the basis of AB5- and AB2-type intermetallic compounds for hydrogen storage and compression applications, based on the analysis of PCT properties of the materials in systems with H2 gas. The article also presents features of integrated energy storage systems utilising metal hydride hydrogen storage and compression, as well as their metal hydride based components developed at IPCP and HySA Systems.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of the Western Cap: UWC Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2020.07.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 289 citations 289 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of the Western Cap: UWC Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2020.07.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 South AfricaPublisher:Elsevier BV Boris P. Tarasov; Pavel V. Fursikov; Alexey A. Volodin; Mikhail S. Bocharnikov; Yustinas Ya Shimkus; Aleksey M. Kashin; Volodymyr A. Yartys; Stanford Chidziva; Sivakumar Pasupathi; Mykhaylo V. Lototskyy;handle: 10566/6048
Abstract Along with a brief overview of literature data on energy storage technologies utilising hydrogen and metal hydrides, this article presents results of the related R&D activities carried out by the authors. The focus is put on proper selection of metal hydride materials on the basis of AB5- and AB2-type intermetallic compounds for hydrogen storage and compression applications, based on the analysis of PCT properties of the materials in systems with H2 gas. The article also presents features of integrated energy storage systems utilising metal hydride hydrogen storage and compression, as well as their metal hydride based components developed at IPCP and HySA Systems.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of the Western Cap: UWC Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2020.07.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 289 citations 289 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of the Western Cap: UWC Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2020.07.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, Norway, SpainPublisher:IOP Publishing Funded by:EC | HyCARE, EC | HYDRIDE4MOBILITYEC| HyCARE ,EC| HYDRIDE4MOBILITYMartin Dornheim; Lars Baetcke; Etsuo Akiba; Jose-Ramón Ares; Tom Autrey; Jussara Barale; Marcello Baricco; Kriston Brooks; Nikolaos Chalkiadakis; Véronique Charbonnier; Steven Christensen; José Bellosta von Colbe; Mattia Costamagna; Erika Dematteis; Jose-Francisco Fernández; Thomas Gennett; David Grant; Tae Wook Heo; Michael Hirscher; Katherine Hurst; Mykhaylo Lototskyy; Oliver Metz; Paola Rizzi; Kouji Sakaki; Sabrina Sartori; Emmanuel Stamatakis; Alastair Stuart; Athanasios Stubos; Gavin Walker; Colin J Webb; Brandon Wood; Volodymyr Yartys; Emmanuel Zoulias;handle: 11250/3025081 , 10852/97224 , 10486/706672 , 2318/1879084
Abstract Industrial and public interest in hydrogen technologies has risen strongly recently, as hydrogen is the ideal means for medium to long term energy storage, transport and usage in combination with renewable and green energy supply. In a future energy system, the production, storage and usage of green hydrogen is a key technology. Hydrogen is and will in future be even more used for industrial production processes as a reduction agent or for the production of synthetic hydrocarbons, especially in the chemical industry and in refineries. Under certain conditions material based systems for hydrogen storage and compression offer advantages over the classical systems based on gaseous or liquid hydrogen. This includes in particular lower maintenance costs, higher reliability and safety. Hydrogen storage is possible at pressures and temperatures much closer to ambient conditions. Hydrogen compression is possible without any moving parts and only by using waste heat. In this paper, we summarize the newest developments of hydrogen carriers for storage and compression and in addition, give an overview of the different research activities in this field.
Archivio Istituziona... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/97224Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ac7cb7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 67visibility views 67 download downloads 17 Powered bymore_vert Archivio Istituziona... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/97224Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ac7cb7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, Norway, SpainPublisher:IOP Publishing Funded by:EC | HyCARE, EC | HYDRIDE4MOBILITYEC| HyCARE ,EC| HYDRIDE4MOBILITYMartin Dornheim; Lars Baetcke; Etsuo Akiba; Jose-Ramón Ares; Tom Autrey; Jussara Barale; Marcello Baricco; Kriston Brooks; Nikolaos Chalkiadakis; Véronique Charbonnier; Steven Christensen; José Bellosta von Colbe; Mattia Costamagna; Erika Dematteis; Jose-Francisco Fernández; Thomas Gennett; David Grant; Tae Wook Heo; Michael Hirscher; Katherine Hurst; Mykhaylo Lototskyy; Oliver Metz; Paola Rizzi; Kouji Sakaki; Sabrina Sartori; Emmanuel Stamatakis; Alastair Stuart; Athanasios Stubos; Gavin Walker; Colin J Webb; Brandon Wood; Volodymyr Yartys; Emmanuel Zoulias;handle: 11250/3025081 , 10852/97224 , 10486/706672 , 2318/1879084
Abstract Industrial and public interest in hydrogen technologies has risen strongly recently, as hydrogen is the ideal means for medium to long term energy storage, transport and usage in combination with renewable and green energy supply. In a future energy system, the production, storage and usage of green hydrogen is a key technology. Hydrogen is and will in future be even more used for industrial production processes as a reduction agent or for the production of synthetic hydrocarbons, especially in the chemical industry and in refineries. Under certain conditions material based systems for hydrogen storage and compression offer advantages over the classical systems based on gaseous or liquid hydrogen. This includes in particular lower maintenance costs, higher reliability and safety. Hydrogen storage is possible at pressures and temperatures much closer to ambient conditions. Hydrogen compression is possible without any moving parts and only by using waste heat. In this paper, we summarize the newest developments of hydrogen carriers for storage and compression and in addition, give an overview of the different research activities in this field.
Archivio Istituziona... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/97224Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ac7cb7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 67visibility views 67 download downloads 17 Powered bymore_vert Archivio Istituziona... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/97224Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ac7cb7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IOP Publishing V Yartys; I Zavaliy; V Berezovets; Yu Pirskyy; F Manilevich; A Kytsya; Yu Verbovytskyy; Yu Dubov; A Kutsyi;Abstract An autonomous power supply device based on a 30 W fuel cell (FC) stack and a hydrolysis-type hydrogen generator was developed. The creation of this device included the construction of a unit for hydrogen generation, development of an electronic control unit for the operation of the device, and testing and optimizing the overall performance. The hydrolysis of NaBH4 was catalyzed by Pt-based catalysts and was studied for different reactor configurations and reagent concentrations. The flat type of the reactor, Pt catalyst deposited on cordierite as a support, and 10% solution of NaBH4 proved to be the most efficient when generating H2 for use in the 30 W FC. A developed electronic control unit effectively regulates the hydrolysis reaction rate and provides the required hydrogen supply to the FC. A Li-ion battery was used to start the work of the developed system. One important feature of the developed electronic system is the use of supercapacitors, enabling smoothening of the periodic variations of the generated power. The created hydrolysis unit integrated with the FC provides a stable power supply for at least 9 h from one refueling (U const = 12 V, I = 0–2.5 A, nominal power = 30 W). The specific generated power of the system when accounting for its weight and volume is similar to the analogues described in the reference data, while the electronic circuit enables its stable and efficient performance, satisfying the consumer needs for autonomous energy supply when a stationary electrical grid is not available.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/acab2d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/acab2d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IOP Publishing V Yartys; I Zavaliy; V Berezovets; Yu Pirskyy; F Manilevich; A Kytsya; Yu Verbovytskyy; Yu Dubov; A Kutsyi;Abstract An autonomous power supply device based on a 30 W fuel cell (FC) stack and a hydrolysis-type hydrogen generator was developed. The creation of this device included the construction of a unit for hydrogen generation, development of an electronic control unit for the operation of the device, and testing and optimizing the overall performance. The hydrolysis of NaBH4 was catalyzed by Pt-based catalysts and was studied for different reactor configurations and reagent concentrations. The flat type of the reactor, Pt catalyst deposited on cordierite as a support, and 10% solution of NaBH4 proved to be the most efficient when generating H2 for use in the 30 W FC. A developed electronic control unit effectively regulates the hydrolysis reaction rate and provides the required hydrogen supply to the FC. A Li-ion battery was used to start the work of the developed system. One important feature of the developed electronic system is the use of supercapacitors, enabling smoothening of the periodic variations of the generated power. The created hydrolysis unit integrated with the FC provides a stable power supply for at least 9 h from one refueling (U const = 12 V, I = 0–2.5 A, nominal power = 30 W). The specific generated power of the system when accounting for its weight and volume is similar to the analogues described in the reference data, while the electronic circuit enables its stable and efficient performance, satisfying the consumer needs for autonomous energy supply when a stationary electrical grid is not available.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/acab2d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/acab2d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NorwayPublisher:MDPI AG Kwo-Hsiung Young; Jean Nei; Chubin Wan; Roman Denys; Volodymyr Yartys;handle: 11250/2470375 , 11250/2460328
Herein, we present a comparison of the electrochemical hydrogen-storage characteristics of two state-of-art Laves phase-based metal hydride alloys (Zr21.5Ti12.0V10.0Cr7.5Mn8.1Co8.0Ni32.2Sn0.3Al0.4 vs. Zr25.0Ti6.5V3.9Mn22.2Fe3.8Ni38.0La0.3) prepared by induction melting and hydrogen decrepitation. The relatively high contents of lighter transition metals (V and Cr) in the first composition results in an average electron density below the C14/C15 threshold ( e / a ~ 6.9 ) and produces a C14-predominated structure, while the average electron density of the second composition is above the C14/C15 threshold and results in a C15-predominated structure. From a combination of variations in composition, main phase structure, and degree of homogeneity, the C14-predominated alloy exhibits higher storage capacities (in both the gaseous phase and electrochemical environment), a slower activation, inferior high-rate discharge, and low-temperature performances, and a better cycle stability compared to the C15-predominated alloy. The superiority in high-rate dischargeability in the C15-predominated alloy is mainly due to its larger reactive surface area. Annealing of the C15-predominated alloy eliminates the ZrNi secondary phase completely and changes the composition of the La-containing secondary phase. While the former change sacrifices the synergetic effects, and degrades the hydrogen storage performance, the latter may contribute to the unchanged surface catalytic ability, even with a reduction in total volume of metallic nickel clusters embedded in the activated surface oxide layer. In general, the C14-predominated alloy is more suitable for high-capacity and long cycle life applications, and the C15-predominated alloy can be used in areas requiring easy activation, and better high-rate and low-temperature performances.
Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/3/22/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3030022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/3/22/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3030022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NorwayPublisher:MDPI AG Kwo-Hsiung Young; Jean Nei; Chubin Wan; Roman Denys; Volodymyr Yartys;handle: 11250/2470375 , 11250/2460328
Herein, we present a comparison of the electrochemical hydrogen-storage characteristics of two state-of-art Laves phase-based metal hydride alloys (Zr21.5Ti12.0V10.0Cr7.5Mn8.1Co8.0Ni32.2Sn0.3Al0.4 vs. Zr25.0Ti6.5V3.9Mn22.2Fe3.8Ni38.0La0.3) prepared by induction melting and hydrogen decrepitation. The relatively high contents of lighter transition metals (V and Cr) in the first composition results in an average electron density below the C14/C15 threshold ( e / a ~ 6.9 ) and produces a C14-predominated structure, while the average electron density of the second composition is above the C14/C15 threshold and results in a C15-predominated structure. From a combination of variations in composition, main phase structure, and degree of homogeneity, the C14-predominated alloy exhibits higher storage capacities (in both the gaseous phase and electrochemical environment), a slower activation, inferior high-rate discharge, and low-temperature performances, and a better cycle stability compared to the C15-predominated alloy. The superiority in high-rate dischargeability in the C15-predominated alloy is mainly due to its larger reactive surface area. Annealing of the C15-predominated alloy eliminates the ZrNi secondary phase completely and changes the composition of the La-containing secondary phase. While the former change sacrifices the synergetic effects, and degrades the hydrogen storage performance, the latter may contribute to the unchanged surface catalytic ability, even with a reduction in total volume of metallic nickel clusters embedded in the activated surface oxide layer. In general, the C14-predominated alloy is more suitable for high-capacity and long cycle life applications, and the C15-predominated alloy can be used in areas requiring easy activation, and better high-rate and low-temperature performances.
Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/3/22/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3030022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/3/22/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3030022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu