Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Schjønning, Per; Lamandé, Mathieu; De Pue, Jan; Cornelis, Wim M.; +2 Authors

    Society calls for protection of agricultural soils in order to sustain the production of foods for a growing population. Compaction of subsoil layers is an increasing problem in modern agriculture and a cause of serious concern because of the poor resilience in natural amelioration. The concept of soil precompression stress has been adapted from civil engineering, although in soil science it is applied to unsaturated soils that have developed a secondary structure from the action of weather, biota and tillage. It assumes strain is elastic at loads up to the precompression stress, while plastic deformation is expected at higher stresses. To determine this threshold we performed uniaxial, confined compression tests for a total of 584 minimally disturbed soil cores sampled at three subsoil layers on nine Danish soils ranging in clay content from 0.02 to 0.38 kg kg−1. The cores were drained to either of three matric potentials (−50, −100 or − 300 hPa) prior to loading. Stress was applied by a constant-strain rate method. We estimated the point of maximum curvature of the strain-log10(normal stress) relation by a numerical procedure. This point is considered here as a compactive stress threshold, typically labeled the soil precompression stress, σpc. The preload suction stress (PSS) was calculated as the product of initial (i.e., before loading) water suction and initial degree of pore water saturation. Multiple regressions were performed to evaluate the effect of soil properties (textural classes, volumetric water content, bulk density (BD), soil organic matter (SOM), and PSS) on σpc. The best model explained 39% of the variation in σpc, and indicated that σpc increases with increasing PSS, BD and SOM. For a given combination of clay, BD and SOM, PSS affected σpc negatively. We recommend our regression model for use in risk assessment tools for estimating sustainable traffic on agricultural soils. The model was validated by five independent data sets from the literature. Our study shows that caution should be applied when regarding σpc as a fixed threshold for compressive strength. We hypothesize that plastic deformation is initiated over a range of stress rather than at a distinctive single value. Further studies are needed to better understand—and potentially quantify—to what extent the predicted σpc can be regarded a central estimate of allowable stress for a given soil.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    PURE Aarhus University
    Part of book or chapter of book . 2023
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1016/bs.agr...
    Part of book or chapter of book . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    http://dx.doi.org/10.1016/bs.a...
    Part of book or chapter of book . 2023
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      PURE Aarhus University
      Part of book or chapter of book . 2023
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1016/bs.agr...
      Part of book or chapter of book . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      http://dx.doi.org/10.1016/bs.a...
      Part of book or chapter of book . 2023
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Schjønning, Per; Lamandé, Mathieu; De Pue, Jan; Cornelis, Wim M.; +2 Authors

    Society calls for protection of agricultural soils in order to sustain the production of foods for a growing population. Compaction of subsoil layers is an increasing problem in modern agriculture and a cause of serious concern because of the poor resilience in natural amelioration. The concept of soil precompression stress has been adapted from civil engineering, although in soil science it is applied to unsaturated soils that have developed a secondary structure from the action of weather, biota and tillage. It assumes strain is elastic at loads up to the precompression stress, while plastic deformation is expected at higher stresses. To determine this threshold we performed uniaxial, confined compression tests for a total of 584 minimally disturbed soil cores sampled at three subsoil layers on nine Danish soils ranging in clay content from 0.02 to 0.38 kg kg−1. The cores were drained to either of three matric potentials (−50, −100 or − 300 hPa) prior to loading. Stress was applied by a constant-strain rate method. We estimated the point of maximum curvature of the strain-log10(normal stress) relation by a numerical procedure. This point is considered here as a compactive stress threshold, typically labeled the soil precompression stress, σpc. The preload suction stress (PSS) was calculated as the product of initial (i.e., before loading) water suction and initial degree of pore water saturation. Multiple regressions were performed to evaluate the effect of soil properties (textural classes, volumetric water content, bulk density (BD), soil organic matter (SOM), and PSS) on σpc. The best model explained 39% of the variation in σpc, and indicated that σpc increases with increasing PSS, BD and SOM. For a given combination of clay, BD and SOM, PSS affected σpc negatively. We recommend our regression model for use in risk assessment tools for estimating sustainable traffic on agricultural soils. The model was validated by five independent data sets from the literature. Our study shows that caution should be applied when regarding σpc as a fixed threshold for compressive strength. We hypothesize that plastic deformation is initiated over a range of stress rather than at a distinctive single value. Further studies are needed to better understand—and potentially quantify—to what extent the predicted σpc can be regarded a central estimate of allowable stress for a given soil.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    PURE Aarhus University
    Part of book or chapter of book . 2023
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1016/bs.agr...
    Part of book or chapter of book . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    http://dx.doi.org/10.1016/bs.a...
    Part of book or chapter of book . 2023
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      PURE Aarhus University
      Part of book or chapter of book . 2023
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1016/bs.agr...
      Part of book or chapter of book . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      http://dx.doi.org/10.1016/bs.a...
      Part of book or chapter of book . 2023
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph