- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 ItalyPublisher:MDPI AG Authors:Sergio Maria Patella;
Sergio Maria Patella
Sergio Maria Patella in OpenAIREFlavio Scrucca;
Flavio Scrucca
Flavio Scrucca in OpenAIREFrancesco Asdrubali;
Francesco Asdrubali
Francesco Asdrubali in OpenAIREStefano Carrese;
Stefano Carrese
Stefano Carrese in OpenAIREdoi: 10.3390/su11164328
handle: 11590/360393
This paper presents a model to evaluate the life cycle greenhouse gases (GHG) emissions, expressed in terms of carbon dioxide equivalent (CO2eq), of a generic fleet composition as a function of the traffic simulation results. First we evaluated the complete life cycle of each category of the vehicles currently circulating; next, by defining a general linear equation, the traffic environmental performances of a real road network (city of Rome) were evaluated using a traffic simulation approach. Finally, the proposed methodology was applied to evaluate the GHG emission of a 100% penetration of battery electric vehicles (BEVs) and various electric and conventional vehicles composition scenarios. In terms of life cycle impacts, BEVs are the vehicles with the highest GHG emissions at the vehicle level (construction + maintenance + end-of-life processes) that are, on average, 20% higher than internal combustion engine vehicles, and 6.5% higher than hybrid electric vehicles (HEVs). Nevertheless, a 100% BEVs penetration scenario generates a reduction of the environmental impact at the mobility system level of about 65%.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/16/4328/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università degli Studi Roma TreArticle . 2019Data sources: Archivio della Ricerca - Università degli Studi Roma Treadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11164328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/16/4328/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università degli Studi Roma TreArticle . 2019Data sources: Archivio della Ricerca - Università degli Studi Roma Treadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11164328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 ItalyPublisher:MDPI AG Authors:BONAMENTE, EMANUELE;
BONAMENTE, EMANUELE
BONAMENTE, EMANUELE in OpenAIRESCRUCCA, FLAVIO;
SCRUCCA, FLAVIO
SCRUCCA, FLAVIO in OpenAIREASDRUBALI, Francesco;
ASDRUBALI, Francesco
ASDRUBALI, Francesco in OpenAIRECOTANA, Franco;
+1 AuthorsCOTANA, Franco
COTANA, Franco in OpenAIREBONAMENTE, EMANUELE;
BONAMENTE, EMANUELE
BONAMENTE, EMANUELE in OpenAIRESCRUCCA, FLAVIO;
SCRUCCA, FLAVIO
SCRUCCA, FLAVIO in OpenAIREASDRUBALI, Francesco;
ASDRUBALI, Francesco
ASDRUBALI, Francesco in OpenAIRECOTANA, Franco;
COTANA, Franco
COTANA, Franco in OpenAIREPRESCIUTTI, ANDREA;
PRESCIUTTI, ANDREA
PRESCIUTTI, ANDREA in OpenAIREdoi: 10.3390/su70912190
handle: 11590/299559 , 11391/1382507
An original methodology for the Water Footprint Assessment (WFA) of a Product for the wine-making industry sector is presented, with a particular focus on the evaluation procedure of the grey water. Results obtained with the proposed methodology are also presented for an Italian case study. The product was analyzed using a life-cycle approach, with the aim of studying the water volumes of each phase according to the newly-released ISO 14046 international standard. The functional unit chosen in this study is the common 0.75 liter wine bottle. An in-house software (V.I.V.A.) was implemented with the goal of accounting for all the contributions in a cradle-to-grave approach. At this stage, however, minor water volumes associated with some foreground and background processes are not assessed. The evaluation procedure was applied to a case study and green, blue, and grey water volumes were computed. Primary data were collected for a red wine produced by an Umbrian wine-making company. Results are in accordance with global average water footprint values from literature, showing a total WF of 632.2 L/bottle, with the major contribution (98.3%) given by green water, and minor contributions (1.2% and 0.5%) given by grey and blue water, respectively. A particular effort was dedicated to the definition of an improved methodology for the assessment of the virtual water volume required to dilute the load of pollutants on the environment below some reference level (Grey WF). The improved methodology was elaborated to assure the completeness of the water footprint assessment and to overcome some limitations of the reference approach. As a result, the overall WF can increase up to 3% in the most conservative hypotheses.
Sustainability arrow_drop_down SustainabilityOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2071-1050/7/9/12190/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale della Ricerca - Università degli Studi di PerugiaArticle . 2015License: CC BYArchivio della Ricerca - Università degli Studi Roma TreArticle . 2015Data sources: Archivio della Ricerca - Università degli Studi Roma Treadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su70912190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2071-1050/7/9/12190/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale della Ricerca - Università degli Studi di PerugiaArticle . 2015License: CC BYArchivio della Ricerca - Università degli Studi Roma TreArticle . 2015Data sources: Archivio della Ricerca - Università degli Studi Roma Treadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su70912190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Authors:Scrucca F.;
Barberio G.;Scrucca F.
Scrucca F. in OpenAIRECutaia L.;
Rinaldi C.;Cutaia L.
Cutaia L. in OpenAIREhandle: 20.500.12079/74567
Energy production from biomass is very strategic for the achievement of global sustainability goals and the use of biofuels for decentralized energy production in medium-small size plants, which conforms to global fossil energy and GHG reduction targets, is expected to increase in the short-medium term.This paper proposes a simplified methodology for estimating the Carbon Footprint associated with heat generation by forest woodchips. The methodology includes all the relevant life cycle phases and is based on the specific fuel and plant characteristics, so it can effectively support sustainability assessment in decision-making regarding biomass projects through proper Carbon Footprint estimates.The application of the methodology showed results in the range of about 6–12 gCO2eq/MJ, depending on the case study characteristics, that agree with the impact values range observed from previous literature. The basic idea that the use of forest woodchips is particularly strategic for sustainable energy production within a “local” wood-energy supply chain (short transport distance) was confirmed. Furthermore, the methodology allowed to estimate indicative transportation distances for which forest woodchips can be considered environmentally competitive compared to alternative renewable sources such as, for instance, wood pellets.
Cleaner Environmenta... arrow_drop_down Cleaner Environmental SystemsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cesys.2023.100126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Cleaner Environmenta... arrow_drop_down Cleaner Environmental SystemsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cesys.2023.100126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, Italy, France, FrancePublisher:Elsevier BV Authors:Maalouf, Chadi;
Maalouf, Chadi
Maalouf, Chadi in OpenAIREIngrao, Carlo;
Ingrao, Carlo
Ingrao, Carlo in OpenAIRESCRUCCA, FLAVIO;
SCRUCCA, FLAVIO
SCRUCCA, FLAVIO in OpenAIREMoussa, Tala;
+4 AuthorsMoussa, Tala
Moussa, Tala in OpenAIREMaalouf, Chadi;
Maalouf, Chadi
Maalouf, Chadi in OpenAIREIngrao, Carlo;
Ingrao, Carlo
Ingrao, Carlo in OpenAIRESCRUCCA, FLAVIO;
SCRUCCA, FLAVIO
SCRUCCA, FLAVIO in OpenAIREMoussa, Tala;
Moussa, Tala
Moussa, Tala in OpenAIREBourdot, Alexandra;
Bourdot, Alexandra
Bourdot, Alexandra in OpenAIRETricase, Caterina;
Tricase, Caterina
Tricase, Caterina in OpenAIREPRESCIUTTI, ANDREA;
PRESCIUTTI, ANDREA
PRESCIUTTI, ANDREA in OpenAIREASDRUBALI, Francesco;
ASDRUBALI, Francesco
ASDRUBALI, Francesco in OpenAIREhandle: 11590/329206 , 11391/1389848 , 11369/362856 , 11586/474147
Abstract Energy efficiency and the reduction of greenhouse gas emissions are actual key issues in all the economic sectors and, in particular, in buildings which is acknowledged worldwide as one of the most energy-consuming. In this context, it would be desirable to duly address those issues by searching for and assessing proper solutions and strategies: the usage of eco-friendly construction materials can be considered as one of those. This paper reports upon the performance of three facades containing sustainable products that are manufactured using natural resources and, alternatively, post-consumer waste based materials; those are: hemp-concrete; and Recycled PolyEthylene Terephthalate (R-PET), respectively. The energy performance of each facade was assessed in terms of cooling and heating demands, electrical consumptions and indoor thermal comfort including indoor temperature and relative humidity. Additionally, a Carbon Footprint (CF) assessment was carried out considering both the estimated energy demands and the life-cycle emission factors associated with the energy mix of the countries where the facades were located, i.e. France and Italy. Based upon the findings of the study, the R-PET facade represented the most performing solution between the three facades in all the scenarios considered and, moreover, the humidity-sensitive flow rate ventilation system came out as a solution able to reduce the electricity consumptions. Finally, considering the Carbon Footprint results, the energy country mix emerged as a key issue, making the Italian case study the worst one, though the total electrical energy consumption were comparable with those of the other case studies.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverJournal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della Ricerca - Università degli Studi Roma TreArticle . 2018Data sources: Archivio della Ricerca - Università degli Studi Roma TreUniversité de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2016.10.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverJournal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della Ricerca - Università degli Studi Roma TreArticle . 2018Data sources: Archivio della Ricerca - Università degli Studi Roma TreUniversité de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2016.10.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Authors:Carlo Ingrao;
Carlo Ingrao
Carlo Ingrao in OpenAIREFlavio Scrucca;
Flavio Scrucca
Flavio Scrucca in OpenAIRECaterina Tricase;
Caterina Tricase
Caterina Tricase in OpenAIREFrancesco Asdrubali;
Francesco Asdrubali
Francesco Asdrubali in OpenAIREhandle: 11590/299571 , 11586/419135 , 11369/338846
Abstract Application of Life Cycle Assessment (LCA) in buildings is usually performed at the envelope scale, mainly for comparison of several sample-solutions, and provides in-depth analyses of the related energy and environmental performances. In this way, it is possible to identify those solutions that perform best in energy and environmental terms, and that so are suitable for construction of sustainable buildings. In this context, the study was aimed at carrying out energy and environmental assessments to compare four external-wall samples characterised by different rates of sophistication in terms of assembly technologies and component materials. The samples considered were properly designed for development of the subsequent energy-environmental analysis. In particular, two “standard” wall compositions and two ventilated facades were considered, using rock-wool and recycled Polyethylene Terephthalate (R-PET) as insulating materials. The study documented that, as regards both energy and environmental impacts, ventilated facades perform quite well compared to the ”standard“ wall compositions, especially when equipped with R-PET. It also confirmed that both solutions easy to be disassembled and recycled materials are key design choices for environmental sustainable and low energy demanding buildings along their whole life cycles. Finally, the authors believe that the study provides helpful insights on the environmental sustainability of eco-friendly materials and technologies, and can contribute to less time and resources consuming LCAs at the building scale.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della Ricerca - Università degli Studi Roma TreArticle . 2016Data sources: Archivio della Ricerca - Università degli Studi Roma TreUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2016.02.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della Ricerca - Università degli Studi Roma TreArticle . 2016Data sources: Archivio della Ricerca - Università degli Studi Roma TreUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2016.02.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, France, FrancePublisher:Elsevier BV Authors:Guillaume Polidori;
Guillaume Polidori
Guillaume Polidori in OpenAIREAntonio Messineo;
Antonio Messineo
Antonio Messineo in OpenAIREChadi Maalouf;
Francesco Asdrubali; +5 AuthorsChadi Maalouf
Chadi Maalouf in OpenAIREGuillaume Polidori;
Guillaume Polidori
Guillaume Polidori in OpenAIREAntonio Messineo;
Antonio Messineo
Antonio Messineo in OpenAIREChadi Maalouf;
Francesco Asdrubali;Chadi Maalouf
Chadi Maalouf in OpenAIREFlavio Scrucca;
Flavio Scrucca
Flavio Scrucca in OpenAIRECarlo Ingrao;
Claudia Arcidiacono; Tala Moussa; Tala Moussa;Carlo Ingrao
Carlo Ingrao in OpenAIREhandle: 20.500.11769/488437 , 11369/396292 , 11586/474123
Abstract Construction is considered as one of the most relevant sectors in terms of environmental impacts, due to the significant use of raw materials, fossil energy consumption and the consequent Greenhouse Gases emissions. The use of unconventional and environmentally-friendly materials and technologies is worldwide recognised as a key factor to enable the decrease of material and energy consumption in buildings. Between natural/sustainable materials, those using hemp products and by-products (fibres and hurds) have rapidly widened their field of application in the building industry, mainly because of their good hygrothermal and acoustic insulation properties. Moreover, the usage of these materials allows high carbon storage due to the CO2 sequestration during the agricultural phase. This study represents an energy and environmental assessment of hemp crop cultivation in France, carried out through a Life Cycle Assessment approach, showing positive and negative contribution related to the different life cycle phases. The total CF evaluated through the IPCC, 2013 GWP 100 method ( IPCC, 2013 ) is equal to 0.975 kgCO2eq, in view of a CO2 uptake of −1.29 kgCO2eq. So, it is understood that the total CF results therefore lower than the CO2 uptake due to the biogenic carbon captured and stored during hemp growth. The total Energy Footprint, instead, was calculated in 17.945 MJ. The Upstream phase came out as the main contributor to the impacts. A sensitivity analysis was performed to explore changes in results related to main inputs assumptions and, in particular, the environmental benefits associated with the replacement of conventional fertilisers (ammonium sulphate) with organic matter were highlighted.
Mémoires en Sciences... arrow_drop_down IRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di CataniaEnvironmental Impact Assessment ReviewArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eiar.2020.106417&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Mémoires en Sciences... arrow_drop_down IRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di CataniaEnvironmental Impact Assessment ReviewArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eiar.2020.106417&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Claudio Severi;Flavio Scrucca;
Flavio Scrucca
Flavio Scrucca in OpenAIREAntonio Brunori;
Nicola Galvan;Antonio Brunori
Antonio Brunori in OpenAIREAbstract Nowadays an increasing attention of public and private agencies to the sustainability performance of events is observed, since it is recognized as a key issue in the context of sustainable development. Assessing the sustainability performance of events involves environmental, social and economic aspects; their impacts are complex and a quantitative assessment is often difficult. This paper presents a new quali-quantitative method developed to measure the sustainability of events, taking into account all its potential impacts. The 2014 World Orienteering Championship, held in Italy, was selected to test the proposed evaluation methodology. The total carbon footprint of the event was 165.34 tCO2eq and the avoided emissions were estimated as being 46 tCO2eq. The adopted quali-quantitative method resulted to be efficient in assessing the sustainability impacts and can be applied for the evaluation of similar events.
Environmental Impact... arrow_drop_down Environmental Impact Assessment ReviewArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eiar.2015.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Impact... arrow_drop_down Environmental Impact Assessment ReviewArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eiar.2015.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Authors:Dario Giuseppe Urbano;
Dario Giuseppe Urbano
Dario Giuseppe Urbano in OpenAIREAndrea Aquino;
Andrea Aquino
Andrea Aquino in OpenAIREFlavio Scrucca;
Flavio Scrucca
Flavio Scrucca in OpenAIREdoi: 10.3390/en16031523
handle: 11379/569764
High energy consumption is one of the main problems of drying, a critical process for many industrial sectors. The optimization of drying energy use results in significant energy saving and has become a topic of interest in recent decades. We investigate benefits of heat recovery in a convective drying system by comparing two different scenarios. The Baseline Scenario is a conventional industrial dryer, and Scenario 1 includes the preheating of drying air by exhausts from the drying chamber. We show that the energy efficiency of the drying cycle is strictly related to the properties of the dried material and operative conditions, and performance improves significantly (by 59% to 87%) when installing a heat recovery unit (Scenario 1). Additionally, the temperature of drying air affects performance. We assess both scenarios by LCA analysis, measuring the environmental impacts and externalities of four different fuels (natural gas, light fuel oil, biomethane, and hardwood chips). Our findings indicate that heat recovery reduces environmental impacts, both when fossil and renewable fuels feed the system, but unexpected impact arises for some categories when renewable fuels are used.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/3/1523/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/3/1523/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Authors:Andrea Aquino;
Andrea Aquino
Andrea Aquino in OpenAIREFlavio Scrucca;
Flavio Scrucca
Flavio Scrucca in OpenAIREEmanuele Bonamente;
Emanuele Bonamente
Emanuele Bonamente in OpenAIREdoi: 10.3390/en14217058
handle: 11379/548715
Geothermal heat pumps have a widespread diffusion as they are able to deliver relatively higher energy output than other systems for building air-conditioning. The exploitation of low-enthalpy geothermal energy, however, presents crucial sustainability issues. This review investigates the primary forms of the environmental impact of geothermal heat pumps and the strategies for their mitigation. As life-cycle analyses shows that the highest impacts arise from installation and operation stages, most optimization studies focus on system thermodynamics, aiming at maximizing the energy performance via the optimization in the design of the different components interacting with the ground and serviced building. There are environmental studies of great relevance that investigate how the climate and ground properties affect the system sustainability and map the most suitable location for geothermal exploitation. Based on this review, ground-source heat pumps are a promising technology for the decarbonization of the building sector. However, a sustainable design of such systems is more complex than conventional air-conditioning systems, and it needs a holistic and multi-disciplinary approach to include the broad environmental boundaries to fully understand the environmental consequences of their operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14217058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14217058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors:Flavio Scrucca;
Grazia Barberio; Laura Cutaia; Caterina Rinaldi;Flavio Scrucca
Flavio Scrucca in OpenAIREdoi: 10.3390/en17010105
Energy production from biomass represents a strategic solution for the achievement of global sustainability goals. In addition, the use of biofuels offers both significant environmental advantages and several socio-economic benefits. In this study, the environmental life cycle impacts associated with the use of woodchips from forest residues for combined heat and power generation in Italy were analyzed. Moreover, the use of woodchips was compared to the use of conventional fossil fuels in similar applications, and different biomass supply scenarios were evaluated to understand their effect on the overall impact related to 1 kWh of electricity. The impacts on “Climate Change” (2.94 × 10−2 kgCO2eq/kWh) and “Resources” (4.28 × 10−1 MJ primary) were revealed to be minimal compared to fossil fuels (reduction of about 95–97%) and forest woodchips emerged as a sustainable alternative for electricity generation. Moreover, impacts regarding “Human health” (3.04 × 10−7 DALY) and “Ecosystem quality” (3.58 × 10−1 PDF·m2·yr) were revealed to be relevant and identified as a research area to be further explored. The findings of this study also highlighted the key role played by the supply mode/distance of the woodchips on the overall life cycle impacts, with the use of “local” biomass representing the best reduction option. Lastly, another aspect to be further investigated is the optimization of the biomass supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu