- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Authors: Lei Gao; Brett A. Bryan; Brett A. Bryan;doi: 10.1038/nature21694
pmid: 28406202
The 17 Sustainable Development Goals (SDGs) and 169 targets under Agenda 2030 of the United Nations map a coherent global sustainability ambition at a level of detail general enough to garner consensus amongst nations. However, achieving the global agenda will depend heavily on successful national-scale implementation, which requires the development of effective science-driven targets tailored to specific national contexts and supported by strong national governance. Here we assess the feasibility of achieving multiple SDG targets at the national scale for the Australian land-sector. We scaled targets to three levels of ambition and two timeframes, then quantitatively explored the option space for target achievement under 648 plausible future environmental, socio-economic, technological and policy pathways using the Land-Use Trade-Offs (LUTO) integrated land systems model. We show that target achievement is very sensitive to global efforts to abate emissions, domestic land-use policy, productivity growth rate, and land-use change adoption behaviour and capacity constraints. Weaker target-setting ambition resulted in higher achievement but poorer sustainability outcomes. Accelerating land-use dynamics after 2030 changed the targets achieved by 2050, warranting a longer-term view and greater flexibility in sustainability implementation. Simultaneous achievement of multiple targets is rare owing to the complexity of sustainability target implementation and the pervasive trade-offs in resource-constrained land systems. Given that hard choices are needed, the land-sector must first address the essential food/fibre production, biodiversity and land degradation components of sustainability via specific policy pathways. It may also contribute to emissions abatement, water and energy targets by capitalizing on co-benefits. However, achieving targets relevant to the land-sector will also require substantial contributions from other sectors such as clean energy, food systems and water resource management. Nations require globally coordinated, national-scale, comprehensive, integrated, multi-sectoral analyses to support national target-setting that prioritizes efficient and effective sustainability interventions across societies, economies and environments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature21694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu385 citations 385 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature21694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Austria, Netherlands, Netherlands, Netherlands, Netherlands, Australia, AustraliaPublisher:California Digital Library (CDL) Enayat A Moallemi; Edoardo Bertone; Sibel Eker; Lei Gao; Katrina Szetey; Nick Taylor; Brett A Bryan;The 17 Sustainable Development Goals (SDGs) represent a holistic and ambitious agenda for transforming the world towards societal well-being, economic prosperity, and environmental protection. Achieving the SDGs is, however, challenged by the performance of interconnected sectors and the complexity of their interactions which drive non-linear system responses, tipping points, and spillover effects. Systems modelling, as an integrated way of thinking about and modelling multisectoral dynamics, can help explain how feedback interactions within and among different sectors can lead to broader system transformation and progress towards the SDGs. Here, we review how system dynamics, as a prominent systems modelling approach, can inform and contribute to sustainability research and implementation, framed by the SDGs. We systematically analyse 357 system dynamics studies undertaken at the local scale where the most important SDG impacts and their initiators are often located, published between 2015 (i.e., SDGs’ inception) and 2020. We analyse the studies to illuminate strengths and limitations in four key areas: diversity of scope; interdisciplinarity of the approaches; the role of stakeholder participation; and the analysis of SDG interactions. Our review highlights opportunities for a better consideration of societal aspects of sustainable development (e.g., poverty, inequality) in modelling efforts; integrating with new interdisciplinary methods to leverage system dynamics modelling capabilities; improving genuine stakeholder engagement for credibility and impacts on the ground; and a more in-depth analysis of SDG interactions (i.e., synergies and trade-offs) with the feedback-rich structure of system dynamics models.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/410337Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31223/x54w5h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/410337Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31223/x54w5h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:IOP Publishing Ang Li; Lei Gao; Shi Chen; Jinling Zhao; Saqirilatu Ujiyad; Jianhui Huang; Xingguo Han; Brett A Bryan;Abstract Financial inclusion is a key policy for achieving the UN Sustainable Development Goals worldwide. However, emerging evidence has challenged the universal effectiveness of this policy. Combining a cross-sectional socio-economic and ecological survey with regional macro-economic and climatic data, we undertook an integrated causal analysis of the impact of financial inclusion policy on the Inner Mongolian herder social-ecological system. Exposure to economic globalization and climate change threatened herder livelihoods via increased feed costs and reduced livestock sales prices. Financial inclusion loans were beneficial for herders with large grassland plot size who used their traditional ecological knowledge to adapt via seasonal herd mobility. However, most herders were sedentary, constrained by small plot size, and used financial inclusion loans to reserve livestock and maintain high stocking densities. This strategy exposed them to inflated feed costs, increased their debt, and led to widespread grassland degradation. The results illustrate the limitations of financial inclusion policy in achieving sustainable development when people are trapped in poverty, subject to novel social-ecological contexts, and their ability to adapt is compromised. Transformative adaptations based on community cooperation, traditional knowledge and institutions, complementary public policies, and technological innovation are crucial to support financial inclusion policy and enhance sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 AustraliaPublisher:Public Library of Science (PLoS) Jeff Connor; Lei Gao; Jianjun Huai; Gang Zhao; Brett A. Bryan; John Kandulu; Darran King;Vulnerability assessments have often invoked sustainable livelihoods theory to support the quantification of adaptive capacity based on the availability of capital--social, human, physical, natural, and financial. However, the assumption that increased availability of these capitals confers greater adaptive capacity remains largely untested. We quantified the relationship between commonly used capital indicators and an empirical index of adaptive capacity (ACI) in the context of vulnerability of Australian wheat production to climate variability and change. We calculated ACI by comparing actual yields from farm survey data to climate-driven expected yields estimated by a crop model for 12 regions in Australia's wheat-sheep zone from 1991-2010. We then compiled data for 24 typical indicators used in vulnerability analyses, spanning the five capitals. We analyzed the ACI and used regression techniques to identify related capital indicators. Between regions, mean ACI was not significantly different but variance over time was. ACI was higher in dry years and lower in wet years suggesting that farm adaptive strategies are geared towards mitigating losses rather than capitalizing on opportunity. Only six of the 24 capital indicators were significantly related to adaptive capacity in a way predicted by theory. Another four indicators were significantly related to adaptive capacity but of the opposite sign, countering our theory-driven expectation. We conclude that the deductive, theory-based use of capitals to define adaptive capacity and vulnerability should be more circumspect. Assessments need to be more evidence-based, first testing the relevance and influence of capital metrics on adaptive capacity for the specific system of interest. This will more effectively direct policy and targeting of investment to mitigate agro-climatic vulnerability.
PLoS ONE arrow_drop_down UniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0117600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down UniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0117600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United Kingdom, AustriaPublisher:Springer Science and Business Media LLC Li, K; Gao, L; Guo, Z; Dong, Y; Moallemi, EA; Kou, G; Chen, M; Lin, W; Liu, Q; Obersteiner, M; Pedercini, M; Bryan, BA;AbstractChina’s long-term sustainability faces socioeconomic and environmental uncertainties. We identify five key systemic risk drivers, called disruptors, which could push China into a polycrisis: pandemic disease, ageing and shrinking population, deglobalization, climate change, and biodiversity loss. Using an integrated simulation model, we quantify the effects of these disruptors on the country’s long-term sustainability framed by 17 Sustainable Development Goals (SDGs). Here we show that ageing and shrinking population, and climate change would be the two most influential disruptors on China’s long-term sustainability. The compound effects of all disruptors could result in up to 2.1 and 7.0 points decline in the China’s SDG score by 2030 and 2050, compared to the baseline with no disruptors and no additional sustainability policies. However, an integrated policy portfolio involving investment in education, healthcare, energy transition, water-use efficiency, ecological conservation and restoration could promote resilience against the compound effects and significantly improve China’s long-term sustainability.
IIASA DARE arrow_drop_down Oxford University Research ArchiveArticle . 2024License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-49725-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Oxford University Research ArchiveArticle . 2024License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-49725-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Fengtai Zhang; Hongmei Tan; Peng Zhao; Lei Gao; Dalai Ma; Yuedong Xiao;High-Quality Development (HQD) can well meet human’s growing needs for a better life, and it is an important manifestation of efficient, fair and sustainable development. It is a crucial turning point for China from high-speed development to HQD. A better understanding the HQD from perspective of efficiency is very important for the development of China. Using prefecture-level city panel data of China from 2005 to 2019, this study built a model coupled with innovation, coordination, greenness, openness, sharing, and slacks-based measure (ICGOS-SBM) based on the Super-SBM model of slack variables. By introducing efficiency thinking, this study measured the HQD level of the Yangtze River Economic Belt (YREB, one of driving forces spearheading China’s HQD in a new era) from the perspective of development “quality”, and explored its spatial and temporal distribution characteristics. The results showed that (a) the temporal HQD levels of the YREB presented an “N”, pattern of rising first, then falling, and then rising; (b) the HQD levels exhibited noticeable regional heterogeneity a the different urban scale, and the development trend of the upper of YREB drove that of the middle and then that of the downstream; (c) the HQD levels of the YREB presented different degrees of spatial agglomeration, with an increasing trend over time, and the high-high agglomeration areas were mainly concentrated in the upper of the YREB with better natural endowments; and (d) the spatial HQD trajectory of the YREB mainly moved back and forth in the southwest-northeast direction, which may be due to its unstable development, showing a relatively obvious back-and-forth movement between Changde and Jingzhou. It aims to provide an innovative perspective for the measurement of HQD levels by introducing efficiency thinking.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2022.109593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2022.109593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:World Scientific Pub Co Pte Lt Mac Kirby; Jeff Connor; Mobin-ud-Din Ahmad; Mohammed Mainuddin; Lei Gao;handle: 11541.2/142578
In an earlier paper (Kirby et al. 2014a), we showed that climate change and a new policy which reallocates water to the environment will impact both the flow of water and the income derived from irrigation in the Murray–Darling Basin. Here, we extend the analysis to consider irrigator and environmental water management strategies to adapt to these new circumstances. Using an integrated hydrology-economics model, we examine a range of strategies and their impact on flows and the gross income of irrigation. We show that the adaptation strategies provide a range of flow and economic outcomes in the Basin. Several strategies offer significant scope to enhance flows without large adverse impacts on the gross income of irrigation overall. Some environmental water management strategies enhance flows in the Murray part of the basin even under the drying influence of a projected median climate change. Irrigator strategies that include carryover of water in storage from one year to the next provide for lesser year to year variability in gross income and may be regarded as more advantageous in providing security against droughts. Flows and the gross income of low value irrigation industries strategies are sensitive to climate change, irrespective of adaptation strategy. Should a projected dry extreme climate change be realized, no strategy can prevent a large reduction in flows and also in gross income, particularly of low value irrigation industries. Nevertheless, environmental water management strategies mitigate the impact on flows, and in some cases may also help mitigate the impacts on gross income. High value irrigation industries are less affected (in terms of gross income, though net income will reduce because of rising water prices) by projected climate change, consistent with observation in the recent long term drought.
Water Economics and ... arrow_drop_down UniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s2382624x15500095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Water Economics and ... arrow_drop_down UniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s2382624x15500095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:IOP Publishing Funded by:ARC | Discovery Early Career Re..., ARC | ARC Future Fellowships - ...ARC| Discovery Early Career Researcher Award - Grant ID: DE210100492 ,ARC| ARC Future Fellowships - Grant ID: FT200100096Rebecca K Runting; Darran King; Martin Nolan; Javier Navarro; Raymundo Marcos-Martinez; Jonathan R Rhodes; Lei Gao; Ian Watson; Andrew Ash; April E Reside; Jorge G Álvarez-Romero; Jessie A Wells; Euan G Ritchie; Michalis Hadjikakou; Don A Driscoll; Jeffery D Connor; Jonathan Garber; Brett A Bryan;Abstract Livestock production is an integral part of the global food system and the livelihoods of local people, but it also raises questions of environmental sustainability due to issues such as greenhouse gas (GHG) emissions, biodiversity decline, land degradation, and water use. Further challenges to extensive livestock systems may arise from changes in climate and the global economy (particularly variation in prices for livestock and carbon). However, significant potential exists for both mitigating these impacts and adapting to change via altering stocking rates, managing fire, and supplementing cattle diets to reduce methane emissions. We developed an integrated, spatio-temporal modelling approach to assess the effectiveness of these options for land management in northern Australia’s tropical savanna under different global change scenarios. Performance was measured against a range of sustainability indicators, including environmental (GHG emissions, biodiversity, water intake, and land condition) and agricultural (profit, beef production) outcomes. Our model shows that maintaining historical stocking rates is not environmentally sustainable due to the accelerated land degradation exacerbated by a changing climate. However, planned early dry season burning substantially reduced emissions, and in our simulations was profitable under all global change scenarios that included a carbon price. Overall, the balance between production and environmental outcomes could be improved by stocking below modelled carrying capacity and implementing fire management. This management scenario was the most profitable (more than double the profit from maintaining historical stocking rates), prevented land degradation, and reduced GHG emissions by 23%. By integrating the cumulative impacts of climate change, external economic drivers, and management actions across a range of sustainability indicators, we show that the future of rangelands in Australia’s savannas has the potential to balance livestock production and environmental outcomes.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad6f2d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad6f2d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Mobin-ud-Din Ahmad; Lei Gao; J. M. Kirby; Mohammed Mainuddin; Jeffery D. Connor;handle: 11541.2/125070
Summary Increasing river environment degradation from historical growth in withdrawal is leading to reallocation of water from irrigation in many basins. We examine how potential reduction in irrigation allocations under a newly enacted environmental water plan for the Murray Darling Basin in Australia, in combination with projected climate change, impact on flows, diversions and the economic returns to irrigation. We use an integrated hydrology–economics model capable of simulating the year-to-year variability of flows, diversions, and economic returns to model three levels of reallocation (2400, 2750 and 3200 GL) under the historical climate, and under a dry, a median and a wet climate change projection. Previous assessments of the reallocation plan do not address climate change impacts, nor the impact of year to year variability in flows on economic returns. The broad results of this analysis are that estimated river flows and diversions are more sensitive to the range of climate change projections than to the range of diversion reallocation scenarios considered. The projected median climate change more or less removes from flows the gains to the environment resulting from reallocation. Reallocations only in combination with no climate change, or climate change at the wetter end of the range of projections, will lead to flows greater than those experienced under the water management regime prior to reallocation. The reduction in economic returns to irrigation is less than the reduction in water available for irrigation: a 25% reduction in the annual average water availability is estimated to reduce the annual average gross value of irrigated agricultural production by about 10%. This is consistent with expectation of economic theory (since more marginal activities are reduced first) and also with observations of reduced water availability and returns in the recent drought in the Murray–Darling Basin. Irrigation returns vary less across the range of climate change projections considered than across the range of reallocation scenarios considered.
Journal of Hydrology arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2014.01.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Hydrology arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2014.01.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Bryan, Brett A.; Nolan, Martin; McKellar, Lisa; Connor, Jeffery D.; Newth, David; Harwood, Tom; King, Darran; Navarro, Javier; Cai, Yiyong; Gao, Lei; Grundy, Mike; Graham, Paul; Ernst, Andreas; Dunstall, Simon; Stock, Florian; Brinsmead, Thomas; Harman, Ian; Grigg, Nicola J.; Battaglia, Michael; Keating, Brian; Wonhas, Alex; Hatfield-Dodds, Steve;handle: 11541.2/125191
AbstractUnderstanding potential future influence of environmental, economic, and social drivers on land-use and sustainability is critical for guiding strategic decisions that can help nations adapt to change, anticipate opportunities, and cope with surprises. Using the Land-Use Trade-Offs (LUTO) model, we undertook a comprehensive, detailed, integrated, and quantitative scenario analysis of land-use and sustainability for Australia’s agricultural land from 2013–2050, under interacting global change and domestic policies, and considering key uncertainties. We assessed land use competition between multiple land-uses and assessed the sustainability of economic returns and ecosystem services at high spatial (1.1km grid cells) and temporal (annual) resolution. We found substantial potential for land-use transition from agriculture to carbon plantings, environmental plantings, and biofuels cropping under certain scenarios, with impacts on the sustainability of economic returns and ecosystem services including food/fibre production, emissions abatement, water resource use, biodiversity services, and energy production. However, the type, magnitude, timing, and location of land-use responses and their impacts were highly dependent on scenario parameter assumptions including global outlook and emissions abatement effort, domestic land-use policy settings, land-use change adoption behaviour, productivity growth, and capacity constraints. With strong global abatement incentives complemented by biodiversity-focussed domestic land-use policy, land-use responses can substantially increase and diversify economic returns to land and produce a much wider range of ecosystem services such as emissions abatement, biodiversity, and energy, without major impacts on agricultural production. However, better governance is needed for managing potentially significant water resource impacts. The results have wide-ranging implications for land-use and sustainability policy and governance at global and domestic scales and can inform strategic thinking and decision-making about land-use and sustainability in Australia. A comprehensive and freely available 26 GB data pack (http://doi.org/10.4225/08/5604A2E8A00CC) provides a unique resource for further research. As similarly nuanced transformational change is also possible elsewhere, our template for comprehensive, integrated, quantitative, and high resolution scenario analysis can support other nations in strategic thinking and decision-making to prepare for an uncertain future.
Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)UniSA Research Outputs RepositoryArticle . 2016 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)UniSA Research Outputs RepositoryArticle . 2016 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Authors: Lei Gao; Brett A. Bryan; Brett A. Bryan;doi: 10.1038/nature21694
pmid: 28406202
The 17 Sustainable Development Goals (SDGs) and 169 targets under Agenda 2030 of the United Nations map a coherent global sustainability ambition at a level of detail general enough to garner consensus amongst nations. However, achieving the global agenda will depend heavily on successful national-scale implementation, which requires the development of effective science-driven targets tailored to specific national contexts and supported by strong national governance. Here we assess the feasibility of achieving multiple SDG targets at the national scale for the Australian land-sector. We scaled targets to three levels of ambition and two timeframes, then quantitatively explored the option space for target achievement under 648 plausible future environmental, socio-economic, technological and policy pathways using the Land-Use Trade-Offs (LUTO) integrated land systems model. We show that target achievement is very sensitive to global efforts to abate emissions, domestic land-use policy, productivity growth rate, and land-use change adoption behaviour and capacity constraints. Weaker target-setting ambition resulted in higher achievement but poorer sustainability outcomes. Accelerating land-use dynamics after 2030 changed the targets achieved by 2050, warranting a longer-term view and greater flexibility in sustainability implementation. Simultaneous achievement of multiple targets is rare owing to the complexity of sustainability target implementation and the pervasive trade-offs in resource-constrained land systems. Given that hard choices are needed, the land-sector must first address the essential food/fibre production, biodiversity and land degradation components of sustainability via specific policy pathways. It may also contribute to emissions abatement, water and energy targets by capitalizing on co-benefits. However, achieving targets relevant to the land-sector will also require substantial contributions from other sectors such as clean energy, food systems and water resource management. Nations require globally coordinated, national-scale, comprehensive, integrated, multi-sectoral analyses to support national target-setting that prioritizes efficient and effective sustainability interventions across societies, economies and environments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature21694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu385 citations 385 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature21694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Austria, Netherlands, Netherlands, Netherlands, Netherlands, Australia, AustraliaPublisher:California Digital Library (CDL) Enayat A Moallemi; Edoardo Bertone; Sibel Eker; Lei Gao; Katrina Szetey; Nick Taylor; Brett A Bryan;The 17 Sustainable Development Goals (SDGs) represent a holistic and ambitious agenda for transforming the world towards societal well-being, economic prosperity, and environmental protection. Achieving the SDGs is, however, challenged by the performance of interconnected sectors and the complexity of their interactions which drive non-linear system responses, tipping points, and spillover effects. Systems modelling, as an integrated way of thinking about and modelling multisectoral dynamics, can help explain how feedback interactions within and among different sectors can lead to broader system transformation and progress towards the SDGs. Here, we review how system dynamics, as a prominent systems modelling approach, can inform and contribute to sustainability research and implementation, framed by the SDGs. We systematically analyse 357 system dynamics studies undertaken at the local scale where the most important SDG impacts and their initiators are often located, published between 2015 (i.e., SDGs’ inception) and 2020. We analyse the studies to illuminate strengths and limitations in four key areas: diversity of scope; interdisciplinarity of the approaches; the role of stakeholder participation; and the analysis of SDG interactions. Our review highlights opportunities for a better consideration of societal aspects of sustainable development (e.g., poverty, inequality) in modelling efforts; integrating with new interdisciplinary methods to leverage system dynamics modelling capabilities; improving genuine stakeholder engagement for credibility and impacts on the ground; and a more in-depth analysis of SDG interactions (i.e., synergies and trade-offs) with the feedback-rich structure of system dynamics models.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/410337Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31223/x54w5h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/410337Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31223/x54w5h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:IOP Publishing Ang Li; Lei Gao; Shi Chen; Jinling Zhao; Saqirilatu Ujiyad; Jianhui Huang; Xingguo Han; Brett A Bryan;Abstract Financial inclusion is a key policy for achieving the UN Sustainable Development Goals worldwide. However, emerging evidence has challenged the universal effectiveness of this policy. Combining a cross-sectional socio-economic and ecological survey with regional macro-economic and climatic data, we undertook an integrated causal analysis of the impact of financial inclusion policy on the Inner Mongolian herder social-ecological system. Exposure to economic globalization and climate change threatened herder livelihoods via increased feed costs and reduced livestock sales prices. Financial inclusion loans were beneficial for herders with large grassland plot size who used their traditional ecological knowledge to adapt via seasonal herd mobility. However, most herders were sedentary, constrained by small plot size, and used financial inclusion loans to reserve livestock and maintain high stocking densities. This strategy exposed them to inflated feed costs, increased their debt, and led to widespread grassland degradation. The results illustrate the limitations of financial inclusion policy in achieving sustainable development when people are trapped in poverty, subject to novel social-ecological contexts, and their ability to adapt is compromised. Transformative adaptations based on community cooperation, traditional knowledge and institutions, complementary public policies, and technological innovation are crucial to support financial inclusion policy and enhance sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 AustraliaPublisher:Public Library of Science (PLoS) Jeff Connor; Lei Gao; Jianjun Huai; Gang Zhao; Brett A. Bryan; John Kandulu; Darran King;Vulnerability assessments have often invoked sustainable livelihoods theory to support the quantification of adaptive capacity based on the availability of capital--social, human, physical, natural, and financial. However, the assumption that increased availability of these capitals confers greater adaptive capacity remains largely untested. We quantified the relationship between commonly used capital indicators and an empirical index of adaptive capacity (ACI) in the context of vulnerability of Australian wheat production to climate variability and change. We calculated ACI by comparing actual yields from farm survey data to climate-driven expected yields estimated by a crop model for 12 regions in Australia's wheat-sheep zone from 1991-2010. We then compiled data for 24 typical indicators used in vulnerability analyses, spanning the five capitals. We analyzed the ACI and used regression techniques to identify related capital indicators. Between regions, mean ACI was not significantly different but variance over time was. ACI was higher in dry years and lower in wet years suggesting that farm adaptive strategies are geared towards mitigating losses rather than capitalizing on opportunity. Only six of the 24 capital indicators were significantly related to adaptive capacity in a way predicted by theory. Another four indicators were significantly related to adaptive capacity but of the opposite sign, countering our theory-driven expectation. We conclude that the deductive, theory-based use of capitals to define adaptive capacity and vulnerability should be more circumspect. Assessments need to be more evidence-based, first testing the relevance and influence of capital metrics on adaptive capacity for the specific system of interest. This will more effectively direct policy and targeting of investment to mitigate agro-climatic vulnerability.
PLoS ONE arrow_drop_down UniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0117600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down UniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0117600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United Kingdom, AustriaPublisher:Springer Science and Business Media LLC Li, K; Gao, L; Guo, Z; Dong, Y; Moallemi, EA; Kou, G; Chen, M; Lin, W; Liu, Q; Obersteiner, M; Pedercini, M; Bryan, BA;AbstractChina’s long-term sustainability faces socioeconomic and environmental uncertainties. We identify five key systemic risk drivers, called disruptors, which could push China into a polycrisis: pandemic disease, ageing and shrinking population, deglobalization, climate change, and biodiversity loss. Using an integrated simulation model, we quantify the effects of these disruptors on the country’s long-term sustainability framed by 17 Sustainable Development Goals (SDGs). Here we show that ageing and shrinking population, and climate change would be the two most influential disruptors on China’s long-term sustainability. The compound effects of all disruptors could result in up to 2.1 and 7.0 points decline in the China’s SDG score by 2030 and 2050, compared to the baseline with no disruptors and no additional sustainability policies. However, an integrated policy portfolio involving investment in education, healthcare, energy transition, water-use efficiency, ecological conservation and restoration could promote resilience against the compound effects and significantly improve China’s long-term sustainability.
IIASA DARE arrow_drop_down Oxford University Research ArchiveArticle . 2024License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-49725-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Oxford University Research ArchiveArticle . 2024License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-49725-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Fengtai Zhang; Hongmei Tan; Peng Zhao; Lei Gao; Dalai Ma; Yuedong Xiao;High-Quality Development (HQD) can well meet human’s growing needs for a better life, and it is an important manifestation of efficient, fair and sustainable development. It is a crucial turning point for China from high-speed development to HQD. A better understanding the HQD from perspective of efficiency is very important for the development of China. Using prefecture-level city panel data of China from 2005 to 2019, this study built a model coupled with innovation, coordination, greenness, openness, sharing, and slacks-based measure (ICGOS-SBM) based on the Super-SBM model of slack variables. By introducing efficiency thinking, this study measured the HQD level of the Yangtze River Economic Belt (YREB, one of driving forces spearheading China’s HQD in a new era) from the perspective of development “quality”, and explored its spatial and temporal distribution characteristics. The results showed that (a) the temporal HQD levels of the YREB presented an “N”, pattern of rising first, then falling, and then rising; (b) the HQD levels exhibited noticeable regional heterogeneity a the different urban scale, and the development trend of the upper of YREB drove that of the middle and then that of the downstream; (c) the HQD levels of the YREB presented different degrees of spatial agglomeration, with an increasing trend over time, and the high-high agglomeration areas were mainly concentrated in the upper of the YREB with better natural endowments; and (d) the spatial HQD trajectory of the YREB mainly moved back and forth in the southwest-northeast direction, which may be due to its unstable development, showing a relatively obvious back-and-forth movement between Changde and Jingzhou. It aims to provide an innovative perspective for the measurement of HQD levels by introducing efficiency thinking.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2022.109593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2022.109593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:World Scientific Pub Co Pte Lt Mac Kirby; Jeff Connor; Mobin-ud-Din Ahmad; Mohammed Mainuddin; Lei Gao;handle: 11541.2/142578
In an earlier paper (Kirby et al. 2014a), we showed that climate change and a new policy which reallocates water to the environment will impact both the flow of water and the income derived from irrigation in the Murray–Darling Basin. Here, we extend the analysis to consider irrigator and environmental water management strategies to adapt to these new circumstances. Using an integrated hydrology-economics model, we examine a range of strategies and their impact on flows and the gross income of irrigation. We show that the adaptation strategies provide a range of flow and economic outcomes in the Basin. Several strategies offer significant scope to enhance flows without large adverse impacts on the gross income of irrigation overall. Some environmental water management strategies enhance flows in the Murray part of the basin even under the drying influence of a projected median climate change. Irrigator strategies that include carryover of water in storage from one year to the next provide for lesser year to year variability in gross income and may be regarded as more advantageous in providing security against droughts. Flows and the gross income of low value irrigation industries strategies are sensitive to climate change, irrespective of adaptation strategy. Should a projected dry extreme climate change be realized, no strategy can prevent a large reduction in flows and also in gross income, particularly of low value irrigation industries. Nevertheless, environmental water management strategies mitigate the impact on flows, and in some cases may also help mitigate the impacts on gross income. High value irrigation industries are less affected (in terms of gross income, though net income will reduce because of rising water prices) by projected climate change, consistent with observation in the recent long term drought.
Water Economics and ... arrow_drop_down UniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s2382624x15500095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Water Economics and ... arrow_drop_down UniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s2382624x15500095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:IOP Publishing Funded by:ARC | Discovery Early Career Re..., ARC | ARC Future Fellowships - ...ARC| Discovery Early Career Researcher Award - Grant ID: DE210100492 ,ARC| ARC Future Fellowships - Grant ID: FT200100096Rebecca K Runting; Darran King; Martin Nolan; Javier Navarro; Raymundo Marcos-Martinez; Jonathan R Rhodes; Lei Gao; Ian Watson; Andrew Ash; April E Reside; Jorge G Álvarez-Romero; Jessie A Wells; Euan G Ritchie; Michalis Hadjikakou; Don A Driscoll; Jeffery D Connor; Jonathan Garber; Brett A Bryan;Abstract Livestock production is an integral part of the global food system and the livelihoods of local people, but it also raises questions of environmental sustainability due to issues such as greenhouse gas (GHG) emissions, biodiversity decline, land degradation, and water use. Further challenges to extensive livestock systems may arise from changes in climate and the global economy (particularly variation in prices for livestock and carbon). However, significant potential exists for both mitigating these impacts and adapting to change via altering stocking rates, managing fire, and supplementing cattle diets to reduce methane emissions. We developed an integrated, spatio-temporal modelling approach to assess the effectiveness of these options for land management in northern Australia’s tropical savanna under different global change scenarios. Performance was measured against a range of sustainability indicators, including environmental (GHG emissions, biodiversity, water intake, and land condition) and agricultural (profit, beef production) outcomes. Our model shows that maintaining historical stocking rates is not environmentally sustainable due to the accelerated land degradation exacerbated by a changing climate. However, planned early dry season burning substantially reduced emissions, and in our simulations was profitable under all global change scenarios that included a carbon price. Overall, the balance between production and environmental outcomes could be improved by stocking below modelled carrying capacity and implementing fire management. This management scenario was the most profitable (more than double the profit from maintaining historical stocking rates), prevented land degradation, and reduced GHG emissions by 23%. By integrating the cumulative impacts of climate change, external economic drivers, and management actions across a range of sustainability indicators, we show that the future of rangelands in Australia’s savannas has the potential to balance livestock production and environmental outcomes.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad6f2d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad6f2d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Mobin-ud-Din Ahmad; Lei Gao; J. M. Kirby; Mohammed Mainuddin; Jeffery D. Connor;handle: 11541.2/125070
Summary Increasing river environment degradation from historical growth in withdrawal is leading to reallocation of water from irrigation in many basins. We examine how potential reduction in irrigation allocations under a newly enacted environmental water plan for the Murray Darling Basin in Australia, in combination with projected climate change, impact on flows, diversions and the economic returns to irrigation. We use an integrated hydrology–economics model capable of simulating the year-to-year variability of flows, diversions, and economic returns to model three levels of reallocation (2400, 2750 and 3200 GL) under the historical climate, and under a dry, a median and a wet climate change projection. Previous assessments of the reallocation plan do not address climate change impacts, nor the impact of year to year variability in flows on economic returns. The broad results of this analysis are that estimated river flows and diversions are more sensitive to the range of climate change projections than to the range of diversion reallocation scenarios considered. The projected median climate change more or less removes from flows the gains to the environment resulting from reallocation. Reallocations only in combination with no climate change, or climate change at the wetter end of the range of projections, will lead to flows greater than those experienced under the water management regime prior to reallocation. The reduction in economic returns to irrigation is less than the reduction in water available for irrigation: a 25% reduction in the annual average water availability is estimated to reduce the annual average gross value of irrigated agricultural production by about 10%. This is consistent with expectation of economic theory (since more marginal activities are reduced first) and also with observations of reduced water availability and returns in the recent drought in the Murray–Darling Basin. Irrigation returns vary less across the range of climate change projections considered than across the range of reallocation scenarios considered.
Journal of Hydrology arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2014.01.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Hydrology arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2014.01.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Bryan, Brett A.; Nolan, Martin; McKellar, Lisa; Connor, Jeffery D.; Newth, David; Harwood, Tom; King, Darran; Navarro, Javier; Cai, Yiyong; Gao, Lei; Grundy, Mike; Graham, Paul; Ernst, Andreas; Dunstall, Simon; Stock, Florian; Brinsmead, Thomas; Harman, Ian; Grigg, Nicola J.; Battaglia, Michael; Keating, Brian; Wonhas, Alex; Hatfield-Dodds, Steve;handle: 11541.2/125191
AbstractUnderstanding potential future influence of environmental, economic, and social drivers on land-use and sustainability is critical for guiding strategic decisions that can help nations adapt to change, anticipate opportunities, and cope with surprises. Using the Land-Use Trade-Offs (LUTO) model, we undertook a comprehensive, detailed, integrated, and quantitative scenario analysis of land-use and sustainability for Australia’s agricultural land from 2013–2050, under interacting global change and domestic policies, and considering key uncertainties. We assessed land use competition between multiple land-uses and assessed the sustainability of economic returns and ecosystem services at high spatial (1.1km grid cells) and temporal (annual) resolution. We found substantial potential for land-use transition from agriculture to carbon plantings, environmental plantings, and biofuels cropping under certain scenarios, with impacts on the sustainability of economic returns and ecosystem services including food/fibre production, emissions abatement, water resource use, biodiversity services, and energy production. However, the type, magnitude, timing, and location of land-use responses and their impacts were highly dependent on scenario parameter assumptions including global outlook and emissions abatement effort, domestic land-use policy settings, land-use change adoption behaviour, productivity growth, and capacity constraints. With strong global abatement incentives complemented by biodiversity-focussed domestic land-use policy, land-use responses can substantially increase and diversify economic returns to land and produce a much wider range of ecosystem services such as emissions abatement, biodiversity, and energy, without major impacts on agricultural production. However, better governance is needed for managing potentially significant water resource impacts. The results have wide-ranging implications for land-use and sustainability policy and governance at global and domestic scales and can inform strategic thinking and decision-making about land-use and sustainability in Australia. A comprehensive and freely available 26 GB data pack (http://doi.org/10.4225/08/5604A2E8A00CC) provides a unique resource for further research. As similarly nuanced transformational change is also possible elsewhere, our template for comprehensive, integrated, quantitative, and high resolution scenario analysis can support other nations in strategic thinking and decision-making to prepare for an uncertain future.
Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)UniSA Research Outputs RepositoryArticle . 2016 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)UniSA Research Outputs RepositoryArticle . 2016 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu