- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors:Pasquale G. F. Filianoti;
Pasquale G. F. Filianoti
Pasquale G. F. Filianoti in OpenAIRELuana Gurnari;
Luana Gurnari
Luana Gurnari in OpenAIREdoi: 10.3390/en13071563
The U-OWC is a caisson breakwater embodying a device for wave energy absorption. Under the wave action, the pressure acting on the upper opening of the vertical duct fluctuates, producing a water discharge alternatively entering/exiting the plant through the U-duct, formed by the duct and the chamber. The interaction between incoming waves and the water discharge alters the wave pressure distribution along the wave-beaten wall of this breakwater compared with the pressure distributions on a vertical pure reflecting wall. As a consequence, the horizontal wave forces produced on the breakwater are also different. A small scale U-OWC breakwater was put off the eastern coast of the Strait of Messina (Southern Italy) to measure the horizontal wave force. Experimental results were compared with Boccotti’s and Goda’s wave pressure formulas, carried out for conventional upright breakwaters, to check their applicability on the U-OWC breakwaters. Both models are suitable for design of U-OWC breakwaters even if they tend to overestimate by up to 25% the actual horizontal loads on the breakwater. Indeed, the greater the absorption of the energy is, the lower the wave pressure on the breakwater wall is.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1563/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1563/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors:Luana Gurnari;
Luana Gurnari
Luana Gurnari in OpenAIREPasquale G. F. Filianoti;
Pasquale G. F. Filianoti
Pasquale G. F. Filianoti in OpenAIREMarco Torresi;
Marco Torresi
Marco Torresi in OpenAIRESergio M. Camporeale;
Sergio M. Camporeale
Sergio M. Camporeale in OpenAIREdoi: 10.3390/en13010283
Oscillating water column (OWC) devices, either fixed or floating, are the most common wave energy converter (WEC) devices. In this work, the fluid dynamic interaction between waves and a U-shaped OWC breakwater embedding a Wells turbine has been investigated through unsteady Computational Fluid Dynamic (CFD) simulations. The full-scale plant installed in the harbor of Civitavecchia (Italy) was numerically modeled. A two-dimensional domain was adopted to simulate the unsteady flow, both outside and inside the U-OWC device, including the air chamber and the oscillating flow inside the conduit hosting the Wells turbine. For the numerical simulation of the damping effect induced by the Wells turbine connected to the air chamber, a porous medium was placed in the computational domain, representing the conduit hosting the turbine. Several simulations were carried out considering periodic waves with different periods and amplitudes, getting a deep insight into the energy conversion process from wave to the turbine power output. For this purpose, the three main steps of the overall energy conversion process have been examined. Firstly, from the wave power to the power of the water oscillating flow inside the U-duct. Secondly, from the power of the oscillating water flow to the air pneumatic power. Finally, from the air pneumatic power to the Wells turbine power output. Results show that the U-OWC can capture up to 66% of the incoming wave power, in the case of a wave period close to the eigenperiod of the plant. However, only two-thirds of the captured energy flux is available to the turbine, being partially dissipated due to the losses in the U-duct and the air chamber. Finally, the overall time-average turbine power output is evaluated showing that it is strongly influenced by a suitable choice of the turbine characteristics (mainly geometry and rotational speed).
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/1/283/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13010283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/1/283/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13010283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors:Zema, Demetrio Antonio;
Zema, Demetrio Antonio
Zema, Demetrio Antonio in OpenAIREFilianoti, Pasquale;
Filianoti, Pasquale
Filianoti, Pasquale in OpenAIRED'Agostino, Daniela;
D'Agostino, Daniela
D'Agostino, Daniela in OpenAIRELabate, Antonino;
+3 AuthorsLabate, Antonino
Labate, Antonino in OpenAIREZema, Demetrio Antonio;
Zema, Demetrio Antonio
Zema, Demetrio Antonio in OpenAIREFilianoti, Pasquale;
Filianoti, Pasquale
Filianoti, Pasquale in OpenAIRED'Agostino, Daniela;
D'Agostino, Daniela
D'Agostino, Daniela in OpenAIRELabate, Antonino;
Labate, Antonino
Labate, Antonino in OpenAIRELucas-Borja, Manuel Esteban;
Lucas-Borja, Manuel Esteban
Lucas-Borja, Manuel Esteban in OpenAIRENicotra, Angelo;
Nicotra, Angelo
Nicotra, Angelo in OpenAIREZimbone, Santo Marcello;
Zimbone, Santo Marcello
Zimbone, Santo Marcello in OpenAIREdoi: 10.3390/su12166327
Benchmarking techniques are useful and simple tools to analyze the performance of the collective irrigation in the Water User Associations (WUAs) towards an increase in service sustainability. Several benchmarking techniques have been proposed to process and predict performance indicators. Instead, some meaningful statistical techniques based on the distance of data samples, which overcome the limitations of the traditional benchmarking techniques, have never been applied to the collective irrigation sector. This study applies Permutational Multivariate Analysis of Variance (PERMANOVA), Multidimensional Scale Models (MDS), and Distance-Based Linear Models (DISTLM) as benchmarking techniques to evaluate the technical and financial performances of 10 WUAs in Calabria (Southern Italy). These benchmarking techniques revealed that the significant differences in the irrigated areas and financial self-sufficiency of the WUAs, shown by PERMANOVA, depend on the large variability of the remaining performance indicators. Both the MDS and DISTLM demonstrated that a higher number of associated users and larger irrigation service coverage allows an increase in the irrigated areas; this enlargement is facilitated if the water price and the size of the personnel staff decrease. The WUAs’ self-sufficiency is mainly influenced by the number of workers and the maintenance, organization, and management costs, while the impacts of the due service fees and water price are more limited; it is also convenient to increase the number of the associated farmers since this increases the economy of scale and the gross revenues of the irrigation service. Overall, from the analysis carried out for the regional case study, these benchmarking techniques seem to be powerful and easy tools to identify the problems of the irrigation service and help in planning the most suitable policies to improve the sustainability of the collective irrigation at the regional scale.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/16/6327/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12166327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/16/6327/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12166327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors:Calogero Picone;
Calogero Picone
Calogero Picone in OpenAIREMarco Sinagra;
Luana Gurnari;Marco Sinagra
Marco Sinagra in OpenAIRETullio Tucciarelli;
+1 AuthorsTullio Tucciarelli
Tullio Tucciarelli in OpenAIRECalogero Picone;
Calogero Picone
Calogero Picone in OpenAIREMarco Sinagra;
Luana Gurnari;Marco Sinagra
Marco Sinagra in OpenAIRETullio Tucciarelli;
Tullio Tucciarelli
Tullio Tucciarelli in OpenAIREPasquale G. F. Filianoti;
Pasquale G. F. Filianoti
Pasquale G. F. Filianoti in OpenAIREdoi: 10.3390/w15050973
In the last few decades, hydropower production has been moving toward a new paradigm of low and diffused power density production of energy with small and mini-hydro plants, which usually do not require significant water storage. In the case of nominal power lower than 20 kW and ultra-low head H (H < 5 m), Archimedes screw or Kaplan type turbines are usually chosen due to their efficiency, which is higher than 0.85. A new cross-flow type turbine called Ultra-low Power Recovery System (UL-PRS) is proposed and its geometry and design criteria are validated in a wide range of operating conditions through 2D numerical analysis computed using the ANSYS Fluent solver. The new proposed solution is much simpler than the previously mentioned competitors; its outlet flow has a horizontal direction and attains similar efficiency. The costs of the UL-PRS turbine are compared with the costs of one Kaplan and one cross-flow turbine (CFT) in the case study of the main water treatment plant of the city of Palermo in Italy. In this case, the UL-PRS efficiency is estimated using a URANS 3D numerical analysis computed with the CFX solver.
Water arrow_drop_down WaterOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4441/15/5/973/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15050973&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4441/15/5/973/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15050973&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu