- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Oxford University Press (OUP) Marko Smiljanic; Tobias Scharnweber; Roberto Cruz-García; Martin Wilmking; Ernst van der Maaten; Ernst van der Maaten; Jonas Pape; Marieke van der Maaten-Theunissen; Marieke van der Maaten-Theunissen;pmid: 29718395
Dendrometers offer a useful tool for long-term, high-resolution monitoring of tree responses to environmental fluctuations and climate change. Here, we analyze a 4-year dendrometer dataset (2014-17) on European beech (Fagus sylvatica L.), common hornbeam (Carpinus betulus L.) and pedunculate oak (Quercus robur L.), co-occuring in a mixed broadleaved forest in northeastern Germany. In our analyses, we focus both on seasonal growth dynamics as well as on the environmental forcing of daily stem-size variations. Over the study period with contrasting weather conditions, we observed species- and year-specific differences in growth phenology (i.e., growth onset, cessation and duration). Oak was characterized by early growth onset and long growth duration in all years as compared with beech and hornbeam. The analysis on the environmental forcing of daily stem dynamics revealed, however, highly similar responses for the studied species, with current-day vapor pressure deficit and sunshine duration negatively, and relative humidity and precipitation positively affecting stem size. When considering lagged effects, environmental conditions often oppositely affected stem-size changes. No consistent seasonality in environmental responses was detected, though specific weather conditions were found to affect temporal patterns in individual years. We suggest that the high similarity in environmental forcing observed between tree species can be explained by daily stem-size changes mainly reflecting tree water status rather than tree growth. Our results stress that correcting dendrometer series for reversible stem hydrological changes is of utmost importance to better quantify tree growth from dendrometers in future.
Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2018 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpy042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 59 citations 59 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2018 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpy042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Sweden, PolandPublisher:Wiley Authors: Marieke van der Maaten-Theunissen; Jürgen Kreyling; Tobias Scharnweber; Karolina Janecka; +23 AuthorsMarieke van der Maaten-Theunissen; Jürgen Kreyling; Tobias Scharnweber; Karolina Janecka; Roberto Cruz-García; Alar Läänelaid; Juliane Stolz; Anna Cedro; Robert Weigel; Robert Weigel; Martin Wilmking; Ernst van der Maaten; Ryszard J. Kaczka; Roberts Matisons; Barbara Spyt; Marcin Klisz; Allan Buras; Igor Drobyshev; Igor Drobyshev; Āris Jansons; Kristina Sohar; Adomas Vitas; Marko Smiljanic; Lena Muffler; Lena Muffler; Jill E. Harvey; Jill E. Harvey;AbstractThe role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree‐ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate–growth responses for the 1943–1972 and 1973–2002 periods and characterizing site‐level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad‐scale climate–growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea.
The Repository of th... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/15982Data sources: Bielefeld Academic Search Engine (BASE)Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Repository of th... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/15982Data sources: Bielefeld Academic Search Engine (BASE)Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Netherlands, FinlandPublisher:Frontiers Media SA Lange, Jelena; Buras, Allan; Cruz-García, Roberto; Gurskaya, Marina; Jalkanen, Risto; Kukarskih, Vladimir; Seo, Jeong-Wook; Wilmking, Martin;Tree growth at northern boreal treelines is generally limited by summer temperature, hence tree rings serve as natural archives of past climatic conditions. However, there is increasing evidence that a changing summer climate as well as certain micro-site conditions can lead to a weakening or loss of the summer temperature signal in trees growing in treeline environments. This phenomenon poses a challenge to all applications relying on stable temperature-growth relationships such as temperature reconstructions and dynamic vegetation models. We tested the effect of differing ecological and climatological conditions on the summer temperature signal of Scots pine at its northern distribution limits by analyzing twelve sites distributed along a 2200 km gradient from Finland to Western Siberia (Russia). Two frequently used proxies in dendroclimatology, ring width and maximum latewood density, were correlated with summer temperature for the period 1901-2013 separately for (i) dry vs. wet micro-sites and (ii) years with dry/warm vs. wet/cold climate regimes prevailing during the growing season. Differing climate regimes significantly affected the temperature signal of Scots pine at about half of our sites: While correlations were stronger in wet/cold than in dry/warm years at most sites located in Russia, differing climate regimes had only little effect at Finnish sites. Both tree-ring proxies were affected in a similar way. Interestingly, micro-site differences significantly affected absolute tree growth, but had only minor effects on the climatic signal at our sites. We conclude that, despite the treeline-proximal location, growth-limiting conditions seem to be exceeded in dry/warm years at most Russian sites, leading to a weakening or loss of the summer temperature signal in Scots pine here. With projected temperature increase, unstable summer temperature signals in Scots pine tree rings might become more frequent, possibly affecting dendroclimatological applications and related fields.
Frontiers in Plant S... arrow_drop_down Wageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2018.01597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Plant S... arrow_drop_down Wageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2018.01597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Oxford University Press (OUP) Marko Smiljanic; Tobias Scharnweber; Roberto Cruz-García; Martin Wilmking; Ernst van der Maaten; Ernst van der Maaten; Jonas Pape; Marieke van der Maaten-Theunissen; Marieke van der Maaten-Theunissen;pmid: 29718395
Dendrometers offer a useful tool for long-term, high-resolution monitoring of tree responses to environmental fluctuations and climate change. Here, we analyze a 4-year dendrometer dataset (2014-17) on European beech (Fagus sylvatica L.), common hornbeam (Carpinus betulus L.) and pedunculate oak (Quercus robur L.), co-occuring in a mixed broadleaved forest in northeastern Germany. In our analyses, we focus both on seasonal growth dynamics as well as on the environmental forcing of daily stem-size variations. Over the study period with contrasting weather conditions, we observed species- and year-specific differences in growth phenology (i.e., growth onset, cessation and duration). Oak was characterized by early growth onset and long growth duration in all years as compared with beech and hornbeam. The analysis on the environmental forcing of daily stem dynamics revealed, however, highly similar responses for the studied species, with current-day vapor pressure deficit and sunshine duration negatively, and relative humidity and precipitation positively affecting stem size. When considering lagged effects, environmental conditions often oppositely affected stem-size changes. No consistent seasonality in environmental responses was detected, though specific weather conditions were found to affect temporal patterns in individual years. We suggest that the high similarity in environmental forcing observed between tree species can be explained by daily stem-size changes mainly reflecting tree water status rather than tree growth. Our results stress that correcting dendrometer series for reversible stem hydrological changes is of utmost importance to better quantify tree growth from dendrometers in future.
Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2018 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpy042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 59 citations 59 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2018 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpy042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Sweden, PolandPublisher:Wiley Authors: Marieke van der Maaten-Theunissen; Jürgen Kreyling; Tobias Scharnweber; Karolina Janecka; +23 AuthorsMarieke van der Maaten-Theunissen; Jürgen Kreyling; Tobias Scharnweber; Karolina Janecka; Roberto Cruz-García; Alar Läänelaid; Juliane Stolz; Anna Cedro; Robert Weigel; Robert Weigel; Martin Wilmking; Ernst van der Maaten; Ryszard J. Kaczka; Roberts Matisons; Barbara Spyt; Marcin Klisz; Allan Buras; Igor Drobyshev; Igor Drobyshev; Āris Jansons; Kristina Sohar; Adomas Vitas; Marko Smiljanic; Lena Muffler; Lena Muffler; Jill E. Harvey; Jill E. Harvey;AbstractThe role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree‐ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate–growth responses for the 1943–1972 and 1973–2002 periods and characterizing site‐level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad‐scale climate–growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea.
The Repository of th... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/15982Data sources: Bielefeld Academic Search Engine (BASE)Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Repository of th... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/15982Data sources: Bielefeld Academic Search Engine (BASE)Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Netherlands, FinlandPublisher:Frontiers Media SA Lange, Jelena; Buras, Allan; Cruz-García, Roberto; Gurskaya, Marina; Jalkanen, Risto; Kukarskih, Vladimir; Seo, Jeong-Wook; Wilmking, Martin;Tree growth at northern boreal treelines is generally limited by summer temperature, hence tree rings serve as natural archives of past climatic conditions. However, there is increasing evidence that a changing summer climate as well as certain micro-site conditions can lead to a weakening or loss of the summer temperature signal in trees growing in treeline environments. This phenomenon poses a challenge to all applications relying on stable temperature-growth relationships such as temperature reconstructions and dynamic vegetation models. We tested the effect of differing ecological and climatological conditions on the summer temperature signal of Scots pine at its northern distribution limits by analyzing twelve sites distributed along a 2200 km gradient from Finland to Western Siberia (Russia). Two frequently used proxies in dendroclimatology, ring width and maximum latewood density, were correlated with summer temperature for the period 1901-2013 separately for (i) dry vs. wet micro-sites and (ii) years with dry/warm vs. wet/cold climate regimes prevailing during the growing season. Differing climate regimes significantly affected the temperature signal of Scots pine at about half of our sites: While correlations were stronger in wet/cold than in dry/warm years at most sites located in Russia, differing climate regimes had only little effect at Finnish sites. Both tree-ring proxies were affected in a similar way. Interestingly, micro-site differences significantly affected absolute tree growth, but had only minor effects on the climatic signal at our sites. We conclude that, despite the treeline-proximal location, growth-limiting conditions seem to be exceeded in dry/warm years at most Russian sites, leading to a weakening or loss of the summer temperature signal in Scots pine here. With projected temperature increase, unstable summer temperature signals in Scots pine tree rings might become more frequent, possibly affecting dendroclimatological applications and related fields.
Frontiers in Plant S... arrow_drop_down Wageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2018.01597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Plant S... arrow_drop_down Wageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2018.01597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu