- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 Spain, Italy, United KingdomPublisher:AIP Publishing Funded by:UKRI | Ultrafast Photochemical D...UKRI| Ultrafast Photochemical Dynamics in Complex EnvironmentsL. L. E. Cigrang; J. A. Green; S. Gómez; J. Cerezo; R. Improta; G. Prampolini; F. Santoro; G. A. Worth;Quantum dynamics simulations are becoming a powerful tool for understanding photo-excited molecules. Their poor scaling, however, means that it is hard to study molecules with more than a few atoms accurately, and a major challenge at the moment is the inclusion of the molecular environment. Here, we present a proof of principle for a way to break the two bottlenecks preventing large but accurate simulations. First, the problem of providing the potential energy surfaces for a general system is addressed by parameterizing a standard force field to reproduce the potential surfaces of the molecule’s excited-states, including the all-important vibronic coupling. While not shown here, this would trivially enable the use of an explicit solvent. Second, to help the scaling of the nuclear dynamics propagation, a hierarchy of approximations is introduced to the variational multi-configurational Gaussian method that retains the variational quantum wavepacket description of the key quantum degrees of freedom and uses classical trajectories for the remaining in a quantum mechanics/molecular mechanics like approach. The method is referred to as force field quantum dynamics (FF-QD), and a two-state ππ*/nπ* model of uracil, excited to its lowest bright ππ* state, is used as a test case.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYFull-Text: https://doi.org/10.1063/5.0204911Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0204911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYFull-Text: https://doi.org/10.1063/5.0204911Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0204911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:American Chemical Society (ACS) Funded by:ANR | HELIOSH2ANR| HELIOSH2Alekos Segalina; Javier Cerezo; Giacomo Prampolini; Fabrizio Santoro; Mariachiara Pastore;The optical absorption spectrum of a perylene diimide (PDI) dye in acetonitrile solution is simulated using the recently developed (J. Chem. Theory Comput. 2020, 16, 1215-1231) Ad-MD|gVH method. This mixed quantum-classical (MQC) approach is based on an adiabatic (Ad) separation of soft(classical)/stiff(quantum) nuclear degrees of freedom and expresses the spectrum as a conformational average (over the soft coordinates) of vibronic spectra (for the stiff coordinates) obtained through the generalized vertical Hessian (gVH) vibronic approach. The average is performed over snapshots extracted from classical molecular dynamics (MD) runs, performed with a specifically parameterized quantum-mechanically derived force field (QMD-FF). A comprehensive assessment of the reliability of different approaches, designed to reproduce spectral shapes of flexible molecules, is here presented. First, the differences in the sampled configurational space and their consequences on the prediction of the absorption spectra are evaluated by comparing the results obtained by means of the specific QMD-FF and of a general-purpose transferable FF with those of a reference ab initio MD (AIMD) in the gas phase, in both a purely classical scheme (ensemble average) and in the Ad-MD|gVH framework. Next, classical ensemble average and MQC predictions are also obtained for the PDI dynamics in solution and compared with the results of a ″static″ approach, based on vibronic calculations carried out on a single optimized perylene diimide structure. In the classical ensemble average approach, the remarkably different samplings obtained with the two FFs lead to sizeable changes in both position and intensity of the predicted spectra, with the one computed along the QMD-FF trajectory closely matching its AIMD counterpart. Conversely, at the Ad-MD|gVH level of theory, the different samplings deliver very similar vibronic spectra, indicating that the error found in the absorption spectra obtained with the general-purpose FF mainly concerns the stiff modes. In fact, it can be effectively corrected by the quadratic extrapolation performed by gVH to locate the minima of the ground- and excited-state potential energy surfaces along such coordinates. Furthermore, in the perspective of studying the self-assembling process of PDI dyes and the vibronic spectra of large-size aggregates, the use of a molecule-specific QMD-FF also appears mandatory, considering the significant errors found in the GAFF trajectory in the flexible lateral chain populations, which dictate the supramolecular aggregation properties.
Journal of Chemical ... arrow_drop_down Journal of Chemical Theory and ComputationArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jctc.0c00919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Chemical ... arrow_drop_down Journal of Chemical Theory and ComputationArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jctc.0c00919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 ItalyPublisher:Springer Science and Business Media LLC Authors: Vishal Kumar Jaiswal; Daniel Aranda Ruiz; Vasilis Petropoulos; Piotr Kabaciński; +8 AuthorsVishal Kumar Jaiswal; Daniel Aranda Ruiz; Vasilis Petropoulos; Piotr Kabaciński; Francesco Montorsi; Lorenzo Uboldi; Simone Ugolini; Shaul Mukamel; Giulio Cerullo; Marco Garavelli; Fabrizio Santoro; Artur Nenov;AbstractExcitation energy transfer (EET) is a key photoinduced process in biological chromophoric assemblies. Here we investigate the factors which can drive EET into efficient ultrafast sub-ps regimes. We demonstrate how a coherent transport of electronic population could facilitate this in water solvated NADH coenzyme and uncover the role of an intermediate dark charge-transfer state. High temporal resolution ultrafast optical spectroscopy gives a 54±11 fs time constant for the EET process. Nonadiabatic quantum dynamical simulations computed through the time-evolution of multidimensional wavepackets suggest that the population transfer is mediated by photoexcited molecular vibrations due to strong coupling between the electronic states. The polar aqueous solvent environment leads to the active participation of a dark charge transfer state, accelerating the vibronically coherent EET process in favorably stacked conformers and solvent cavities. Our work demonstrates how the interplay of structural and environmental factors leads to diverse pathways for the EET process in flexible heterodimers and provides general insights relevant for coherent EET processes in stacked multichromophoric aggregates like DNA strands.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-48871-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-48871-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 ItalyPublisher:Royal Society of Chemistry (RSC) Funded by:EC | LightDyNAmicsEC| LightDyNAmicsAuthors: Martha Yaghoubi Jouybari; Yanli Liu; Roberto Improta; Fabrizio Santoro;A partial ultrafast ππ* → nπ* transfer is predicted. Many vibrational modes are activated, but oscillations of bonds and angles are quickly damped.
IRIS Cnr arrow_drop_down Physical Chemistry Chemical PhysicsArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefPhysical Chemistry Chemical PhysicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0cp04123h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Physical Chemistry Chemical PhysicsArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefPhysical Chemistry Chemical PhysicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0cp04123h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Royal Society of Chemistry (RSC) Authors: Chiara Cappelli; Mariangela Di Donato; Mariangela Di Donato; Luisa Lascialfari; +12 AuthorsChiara Cappelli; Mariangela Di Donato; Mariangela Di Donato; Luisa Lascialfari; Andrea Lapini; Andrea Lapini; Ivan Carnimeo; Malgorzata Biczysko; Fabrizio Santoro; Paolo Foggi; Paolo Foggi; Pierangelo Fabbrizzi; Roberto Righini; Roberto Righini; Matteo Piccardo; Stefano Cicchi;doi: 10.1039/c3cp54609h
pmid: 24513677
handle: 20.500.14243/225786 , 11696/58691 , 11568/389467 , 11391/1234946 , 11384/59403 , 20.500.11767/32787 , 2158/861894 , 11381/2891043
doi: 10.1039/c3cp54609h
pmid: 24513677
handle: 20.500.14243/225786 , 11696/58691 , 11568/389467 , 11391/1234946 , 11384/59403 , 20.500.11767/32787 , 2158/861894 , 11381/2891043
Fast and efficient intramolecular energy transfer takes place in the umbelliferone–alizarin bichromophore; the process is well described by the Förster mechanism.
METRology Institutio... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2014Data sources: Archivio della Ricerca - Università di PisaINRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3cp54609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert METRology Institutio... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2014Data sources: Archivio della Ricerca - Università di PisaINRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3cp54609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Wiley Funded by:MIURMIURChiara Cappelli; Cristina Sissa; Fabrizio Santoro; Andrea Lapini; Andrea Lapini; Irene Tosi; Alessandro Iagatti; Francesco Sansone; Mariangela Di Donato; Mariangela Di Donato; Mireia Segado Centellas; Laura Baldini; Francesca Terenziani; Elisa Campioli;pmid: 26867716
handle: 20.500.14243/324098 , 11696/58647 , 11384/61760 , 2158/1045432 , 11381/2806485
pmid: 26867716
handle: 20.500.14243/324098 , 11696/58647 , 11384/61760 , 2158/1045432 , 11381/2806485
AbstractIn this work, the dynamics of electronic energy transfer (EET) in bichromophoric donor–acceptor systems, obtained by functionalizing a calix[4]arene scaffold with two dyes, was experimentally and theoretically characterized. The investigated compounds are highly versatile, due to the possibility of linking the dye molecules to the cone or partial cone structure of the calix[4]arene, which directs the two active units to the same or opposite side of the scaffold, respectively. The dynamics and efficiency of the EET process between the donor and acceptor units was investigated and discussed through a combined experimental and theoretical approach, involving ultrafast pump–probe spectroscopy and density functional theory based characterization of the energetic and spectroscopic properties of the system. Our results suggest that the external medium strongly determines the particular conformation adopted by the bichromophores, with a direct effect on the extent of excitonic coupling between the dyes and hence on the dynamics of the EET process itself.
METRology Institutio... arrow_drop_down ChemPhysChemArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2016Data sources: Flore (Florence Research Repository)INRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cphc.201501065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert METRology Institutio... arrow_drop_down ChemPhysChemArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2016Data sources: Flore (Florence Research Repository)INRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cphc.201501065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 Spain, Italy, United KingdomPublisher:AIP Publishing Funded by:UKRI | Ultrafast Photochemical D...UKRI| Ultrafast Photochemical Dynamics in Complex EnvironmentsL. L. E. Cigrang; J. A. Green; S. Gómez; J. Cerezo; R. Improta; G. Prampolini; F. Santoro; G. A. Worth;Quantum dynamics simulations are becoming a powerful tool for understanding photo-excited molecules. Their poor scaling, however, means that it is hard to study molecules with more than a few atoms accurately, and a major challenge at the moment is the inclusion of the molecular environment. Here, we present a proof of principle for a way to break the two bottlenecks preventing large but accurate simulations. First, the problem of providing the potential energy surfaces for a general system is addressed by parameterizing a standard force field to reproduce the potential surfaces of the molecule’s excited-states, including the all-important vibronic coupling. While not shown here, this would trivially enable the use of an explicit solvent. Second, to help the scaling of the nuclear dynamics propagation, a hierarchy of approximations is introduced to the variational multi-configurational Gaussian method that retains the variational quantum wavepacket description of the key quantum degrees of freedom and uses classical trajectories for the remaining in a quantum mechanics/molecular mechanics like approach. The method is referred to as force field quantum dynamics (FF-QD), and a two-state ππ*/nπ* model of uracil, excited to its lowest bright ππ* state, is used as a test case.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYFull-Text: https://doi.org/10.1063/5.0204911Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0204911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYFull-Text: https://doi.org/10.1063/5.0204911Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0204911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:American Chemical Society (ACS) Funded by:ANR | HELIOSH2ANR| HELIOSH2Alekos Segalina; Javier Cerezo; Giacomo Prampolini; Fabrizio Santoro; Mariachiara Pastore;The optical absorption spectrum of a perylene diimide (PDI) dye in acetonitrile solution is simulated using the recently developed (J. Chem. Theory Comput. 2020, 16, 1215-1231) Ad-MD|gVH method. This mixed quantum-classical (MQC) approach is based on an adiabatic (Ad) separation of soft(classical)/stiff(quantum) nuclear degrees of freedom and expresses the spectrum as a conformational average (over the soft coordinates) of vibronic spectra (for the stiff coordinates) obtained through the generalized vertical Hessian (gVH) vibronic approach. The average is performed over snapshots extracted from classical molecular dynamics (MD) runs, performed with a specifically parameterized quantum-mechanically derived force field (QMD-FF). A comprehensive assessment of the reliability of different approaches, designed to reproduce spectral shapes of flexible molecules, is here presented. First, the differences in the sampled configurational space and their consequences on the prediction of the absorption spectra are evaluated by comparing the results obtained by means of the specific QMD-FF and of a general-purpose transferable FF with those of a reference ab initio MD (AIMD) in the gas phase, in both a purely classical scheme (ensemble average) and in the Ad-MD|gVH framework. Next, classical ensemble average and MQC predictions are also obtained for the PDI dynamics in solution and compared with the results of a ″static″ approach, based on vibronic calculations carried out on a single optimized perylene diimide structure. In the classical ensemble average approach, the remarkably different samplings obtained with the two FFs lead to sizeable changes in both position and intensity of the predicted spectra, with the one computed along the QMD-FF trajectory closely matching its AIMD counterpart. Conversely, at the Ad-MD|gVH level of theory, the different samplings deliver very similar vibronic spectra, indicating that the error found in the absorption spectra obtained with the general-purpose FF mainly concerns the stiff modes. In fact, it can be effectively corrected by the quadratic extrapolation performed by gVH to locate the minima of the ground- and excited-state potential energy surfaces along such coordinates. Furthermore, in the perspective of studying the self-assembling process of PDI dyes and the vibronic spectra of large-size aggregates, the use of a molecule-specific QMD-FF also appears mandatory, considering the significant errors found in the GAFF trajectory in the flexible lateral chain populations, which dictate the supramolecular aggregation properties.
Journal of Chemical ... arrow_drop_down Journal of Chemical Theory and ComputationArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jctc.0c00919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Chemical ... arrow_drop_down Journal of Chemical Theory and ComputationArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jctc.0c00919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 ItalyPublisher:Springer Science and Business Media LLC Authors: Vishal Kumar Jaiswal; Daniel Aranda Ruiz; Vasilis Petropoulos; Piotr Kabaciński; +8 AuthorsVishal Kumar Jaiswal; Daniel Aranda Ruiz; Vasilis Petropoulos; Piotr Kabaciński; Francesco Montorsi; Lorenzo Uboldi; Simone Ugolini; Shaul Mukamel; Giulio Cerullo; Marco Garavelli; Fabrizio Santoro; Artur Nenov;AbstractExcitation energy transfer (EET) is a key photoinduced process in biological chromophoric assemblies. Here we investigate the factors which can drive EET into efficient ultrafast sub-ps regimes. We demonstrate how a coherent transport of electronic population could facilitate this in water solvated NADH coenzyme and uncover the role of an intermediate dark charge-transfer state. High temporal resolution ultrafast optical spectroscopy gives a 54±11 fs time constant for the EET process. Nonadiabatic quantum dynamical simulations computed through the time-evolution of multidimensional wavepackets suggest that the population transfer is mediated by photoexcited molecular vibrations due to strong coupling between the electronic states. The polar aqueous solvent environment leads to the active participation of a dark charge transfer state, accelerating the vibronically coherent EET process in favorably stacked conformers and solvent cavities. Our work demonstrates how the interplay of structural and environmental factors leads to diverse pathways for the EET process in flexible heterodimers and provides general insights relevant for coherent EET processes in stacked multichromophoric aggregates like DNA strands.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-48871-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-48871-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 ItalyPublisher:Royal Society of Chemistry (RSC) Funded by:EC | LightDyNAmicsEC| LightDyNAmicsAuthors: Martha Yaghoubi Jouybari; Yanli Liu; Roberto Improta; Fabrizio Santoro;A partial ultrafast ππ* → nπ* transfer is predicted. Many vibrational modes are activated, but oscillations of bonds and angles are quickly damped.
IRIS Cnr arrow_drop_down Physical Chemistry Chemical PhysicsArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefPhysical Chemistry Chemical PhysicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0cp04123h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Physical Chemistry Chemical PhysicsArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefPhysical Chemistry Chemical PhysicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0cp04123h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Royal Society of Chemistry (RSC) Authors: Chiara Cappelli; Mariangela Di Donato; Mariangela Di Donato; Luisa Lascialfari; +12 AuthorsChiara Cappelli; Mariangela Di Donato; Mariangela Di Donato; Luisa Lascialfari; Andrea Lapini; Andrea Lapini; Ivan Carnimeo; Malgorzata Biczysko; Fabrizio Santoro; Paolo Foggi; Paolo Foggi; Pierangelo Fabbrizzi; Roberto Righini; Roberto Righini; Matteo Piccardo; Stefano Cicchi;doi: 10.1039/c3cp54609h
pmid: 24513677
handle: 20.500.14243/225786 , 11696/58691 , 11568/389467 , 11391/1234946 , 11384/59403 , 20.500.11767/32787 , 2158/861894 , 11381/2891043
doi: 10.1039/c3cp54609h
pmid: 24513677
handle: 20.500.14243/225786 , 11696/58691 , 11568/389467 , 11391/1234946 , 11384/59403 , 20.500.11767/32787 , 2158/861894 , 11381/2891043
Fast and efficient intramolecular energy transfer takes place in the umbelliferone–alizarin bichromophore; the process is well described by the Förster mechanism.
METRology Institutio... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2014Data sources: Archivio della Ricerca - Università di PisaINRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3cp54609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert METRology Institutio... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2014Data sources: Archivio della Ricerca - Università di PisaINRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3cp54609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Wiley Funded by:MIURMIURChiara Cappelli; Cristina Sissa; Fabrizio Santoro; Andrea Lapini; Andrea Lapini; Irene Tosi; Alessandro Iagatti; Francesco Sansone; Mariangela Di Donato; Mariangela Di Donato; Mireia Segado Centellas; Laura Baldini; Francesca Terenziani; Elisa Campioli;pmid: 26867716
handle: 20.500.14243/324098 , 11696/58647 , 11384/61760 , 2158/1045432 , 11381/2806485
pmid: 26867716
handle: 20.500.14243/324098 , 11696/58647 , 11384/61760 , 2158/1045432 , 11381/2806485
AbstractIn this work, the dynamics of electronic energy transfer (EET) in bichromophoric donor–acceptor systems, obtained by functionalizing a calix[4]arene scaffold with two dyes, was experimentally and theoretically characterized. The investigated compounds are highly versatile, due to the possibility of linking the dye molecules to the cone or partial cone structure of the calix[4]arene, which directs the two active units to the same or opposite side of the scaffold, respectively. The dynamics and efficiency of the EET process between the donor and acceptor units was investigated and discussed through a combined experimental and theoretical approach, involving ultrafast pump–probe spectroscopy and density functional theory based characterization of the energetic and spectroscopic properties of the system. Our results suggest that the external medium strongly determines the particular conformation adopted by the bichromophores, with a direct effect on the extent of excitonic coupling between the dyes and hence on the dynamics of the EET process itself.
METRology Institutio... arrow_drop_down ChemPhysChemArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2016Data sources: Flore (Florence Research Repository)INRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cphc.201501065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert METRology Institutio... arrow_drop_down ChemPhysChemArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2016Data sources: Flore (Florence Research Repository)INRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cphc.201501065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu