- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Funded by:EC | RE-ROADEC| RE-ROADPaolino Caputo; Pietro Calandra; Valeria Loise; Adolfo Le Pera; Ana-Maria Putz; Abraham A. Abe; Luigi Madeo; Bagdat Teltayev; Maria Laura Luprano; Michela Alfè; Valentina Gargiulo; Giovanna Ruoppolo; Cesare Oliviero Rossi;doi: 10.3390/su14105790
handle: 20.500.14243/429379 , 20.500.11770/342326
Urban waste management is a hard task: more than 30% of the world’s total production of Municipal Solid Wastes (MSW) is not adequately handled, with landfilling remaining as a common practice. Another source of wastes is the road pavement industry: with a service life of about 10–15 years, asphalts become stiff, susceptible to cracks, and therefore no longer adapted for road paving, so they become wastes. To simultaneously solve these problems, a circular economy-based approach is proposed by the ReScA project, suggesting the use of pyrolysis to treat MSW (or its fractions as Refuse Derived Fuels, RDFs), whose residues (oil and char) can be used as added-value ingredients for the asphalt cycle. Char can be used to prepare better performing and durable asphalts, and oil can be used to regenerate exhaust asphalts, avoiding their landfilling. The proposed approach provides a different and more useful pathway in the end-of-waste (EoW) cycle of urban wastes. This proof of concept is suggested by the following two observations: (i) char is made up by carbonaceous particles highly compatible with the organic nature of bitumens, so its addition can reinforce the overall bitumen structure, increasing its mechanical properties and slowing down the molecular kinetics of its aging process; (ii) oil is rich in hydrocarbons, so it can enrich the poor fraction of the maltene phase in exhaust asphalts. These hypotheses have been proved by testing the residues derived from the pyrolysis of RDFs for the improvement of mechanical characteristics of a representative bitumen sample and its regeneration after aging. The proposed approach is suggested by the physico-chemical study of the materials involved, and aims to show how the chemical knowledge of complex systems, like bituminous materials, can help in solving environmental issues. We hope that this approach will be considered as a model method for the future.
IRIS Cnr arrow_drop_down IRIS CnrArticle . 2022License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/429379/1/Caputo%20et%20al_%20sustainability2022.pdfData sources: IRIS CnrArchivio Istituzionale dell'Università della CalabriaArticle . 2022Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down IRIS CnrArticle . 2022License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/429379/1/Caputo%20et%20al_%20sustainability2022.pdfData sources: IRIS CnrArchivio Istituzionale dell'Università della CalabriaArticle . 2022Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Funded by:EC | RE-ROADEC| RE-ROADPaolino Caputo; Pietro Calandra; Valeria Loise; Adolfo Le Pera; Ana-Maria Putz; Abraham A. Abe; Luigi Madeo; Bagdat Teltayev; Maria Laura Luprano; Michela Alfè; Valentina Gargiulo; Giovanna Ruoppolo; Cesare Oliviero Rossi;doi: 10.3390/su14105790
handle: 20.500.14243/429379 , 20.500.11770/342326
Urban waste management is a hard task: more than 30% of the world’s total production of Municipal Solid Wastes (MSW) is not adequately handled, with landfilling remaining as a common practice. Another source of wastes is the road pavement industry: with a service life of about 10–15 years, asphalts become stiff, susceptible to cracks, and therefore no longer adapted for road paving, so they become wastes. To simultaneously solve these problems, a circular economy-based approach is proposed by the ReScA project, suggesting the use of pyrolysis to treat MSW (or its fractions as Refuse Derived Fuels, RDFs), whose residues (oil and char) can be used as added-value ingredients for the asphalt cycle. Char can be used to prepare better performing and durable asphalts, and oil can be used to regenerate exhaust asphalts, avoiding their landfilling. The proposed approach provides a different and more useful pathway in the end-of-waste (EoW) cycle of urban wastes. This proof of concept is suggested by the following two observations: (i) char is made up by carbonaceous particles highly compatible with the organic nature of bitumens, so its addition can reinforce the overall bitumen structure, increasing its mechanical properties and slowing down the molecular kinetics of its aging process; (ii) oil is rich in hydrocarbons, so it can enrich the poor fraction of the maltene phase in exhaust asphalts. These hypotheses have been proved by testing the residues derived from the pyrolysis of RDFs for the improvement of mechanical characteristics of a representative bitumen sample and its regeneration after aging. The proposed approach is suggested by the physico-chemical study of the materials involved, and aims to show how the chemical knowledge of complex systems, like bituminous materials, can help in solving environmental issues. We hope that this approach will be considered as a model method for the future.
IRIS Cnr arrow_drop_down IRIS CnrArticle . 2022License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/429379/1/Caputo%20et%20al_%20sustainability2022.pdfData sources: IRIS CnrArchivio Istituzionale dell'Università della CalabriaArticle . 2022Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down IRIS CnrArticle . 2022License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/429379/1/Caputo%20et%20al_%20sustainability2022.pdfData sources: IRIS CnrArchivio Istituzionale dell'Università della CalabriaArticle . 2022Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Institute of Combustion Problems P. Caputo1; P. Calandra2*; V. Loise1; M. Porto1; A. Le Pera3; A.A. Abe1; B. Teltayev4; 5*; M.L. Luprano6; M. Alfè7; V. Gargiulo7; G. Ruoppolo7; C. Oliviero Rossi1;doi: 10.18321/ectj1520
handle: 20.500.14243/455162 , 20.500.11770/367347
The production and maintenance of road pavements consume resources and produce wastes that are disposed of in landfills. To make more sustainable this activity, we have envisioned a method based on a circular use of residues (oil and char) from municipal solid waste pyrolysis as useful additives for producing improved asphalts and for recycling old asphalts to generate new ones, reducing at the same time the consumption of resources for the production of new road pavements and the disposal of wastes to landfills. This work aims to show the feasibility of the integration of two processes (thermal treatment of municipal solid waste on one side, and that of road pavement production on the other side) where the products deriving from waste pyrolysis become added-value materials to improve the quality of road pavements. In this contribution, we presented the effect of pyrolysis product addition on asphalt binder (bitumen) preparation and aging. Solid and liquid products, deriving from the pyrolysis of two kinds of wastes (refused derived fuel (RDF) and granulated rubber tyre waste), have been used for the preparation of asphalt binder samples. Rheological tests have been performed to determine the mechanical properties of neat asphalt binder (bitumen) and those enriched with pyrolysis derived products. Measurements to evaluate possible anti-aging effects have been also performed. The collected results indicate that char addition strengthens the overall bitumen intermolecular structure while bio-oil addition exerts a rejuvenating activity.
IRIS Cnr arrow_drop_down Eurasian Chemico-Technological JournalArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2023Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18321/ectj1520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Eurasian Chemico-Technological JournalArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2023Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18321/ectj1520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Institute of Combustion Problems P. Caputo1; P. Calandra2*; V. Loise1; M. Porto1; A. Le Pera3; A.A. Abe1; B. Teltayev4; 5*; M.L. Luprano6; M. Alfè7; V. Gargiulo7; G. Ruoppolo7; C. Oliviero Rossi1;doi: 10.18321/ectj1520
handle: 20.500.14243/455162 , 20.500.11770/367347
The production and maintenance of road pavements consume resources and produce wastes that are disposed of in landfills. To make more sustainable this activity, we have envisioned a method based on a circular use of residues (oil and char) from municipal solid waste pyrolysis as useful additives for producing improved asphalts and for recycling old asphalts to generate new ones, reducing at the same time the consumption of resources for the production of new road pavements and the disposal of wastes to landfills. This work aims to show the feasibility of the integration of two processes (thermal treatment of municipal solid waste on one side, and that of road pavement production on the other side) where the products deriving from waste pyrolysis become added-value materials to improve the quality of road pavements. In this contribution, we presented the effect of pyrolysis product addition on asphalt binder (bitumen) preparation and aging. Solid and liquid products, deriving from the pyrolysis of two kinds of wastes (refused derived fuel (RDF) and granulated rubber tyre waste), have been used for the preparation of asphalt binder samples. Rheological tests have been performed to determine the mechanical properties of neat asphalt binder (bitumen) and those enriched with pyrolysis derived products. Measurements to evaluate possible anti-aging effects have been also performed. The collected results indicate that char addition strengthens the overall bitumen intermolecular structure while bio-oil addition exerts a rejuvenating activity.
IRIS Cnr arrow_drop_down Eurasian Chemico-Technological JournalArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2023Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18321/ectj1520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Eurasian Chemico-Technological JournalArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2023Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18321/ectj1520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Funded by:EC | RE-ROADEC| RE-ROADPaolino Caputo; Pietro Calandra; Valeria Loise; Adolfo Le Pera; Ana-Maria Putz; Abraham A. Abe; Luigi Madeo; Bagdat Teltayev; Maria Laura Luprano; Michela Alfè; Valentina Gargiulo; Giovanna Ruoppolo; Cesare Oliviero Rossi;doi: 10.3390/su14105790
handle: 20.500.14243/429379 , 20.500.11770/342326
Urban waste management is a hard task: more than 30% of the world’s total production of Municipal Solid Wastes (MSW) is not adequately handled, with landfilling remaining as a common practice. Another source of wastes is the road pavement industry: with a service life of about 10–15 years, asphalts become stiff, susceptible to cracks, and therefore no longer adapted for road paving, so they become wastes. To simultaneously solve these problems, a circular economy-based approach is proposed by the ReScA project, suggesting the use of pyrolysis to treat MSW (or its fractions as Refuse Derived Fuels, RDFs), whose residues (oil and char) can be used as added-value ingredients for the asphalt cycle. Char can be used to prepare better performing and durable asphalts, and oil can be used to regenerate exhaust asphalts, avoiding their landfilling. The proposed approach provides a different and more useful pathway in the end-of-waste (EoW) cycle of urban wastes. This proof of concept is suggested by the following two observations: (i) char is made up by carbonaceous particles highly compatible with the organic nature of bitumens, so its addition can reinforce the overall bitumen structure, increasing its mechanical properties and slowing down the molecular kinetics of its aging process; (ii) oil is rich in hydrocarbons, so it can enrich the poor fraction of the maltene phase in exhaust asphalts. These hypotheses have been proved by testing the residues derived from the pyrolysis of RDFs for the improvement of mechanical characteristics of a representative bitumen sample and its regeneration after aging. The proposed approach is suggested by the physico-chemical study of the materials involved, and aims to show how the chemical knowledge of complex systems, like bituminous materials, can help in solving environmental issues. We hope that this approach will be considered as a model method for the future.
IRIS Cnr arrow_drop_down IRIS CnrArticle . 2022License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/429379/1/Caputo%20et%20al_%20sustainability2022.pdfData sources: IRIS CnrArchivio Istituzionale dell'Università della CalabriaArticle . 2022Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down IRIS CnrArticle . 2022License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/429379/1/Caputo%20et%20al_%20sustainability2022.pdfData sources: IRIS CnrArchivio Istituzionale dell'Università della CalabriaArticle . 2022Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Funded by:EC | RE-ROADEC| RE-ROADPaolino Caputo; Pietro Calandra; Valeria Loise; Adolfo Le Pera; Ana-Maria Putz; Abraham A. Abe; Luigi Madeo; Bagdat Teltayev; Maria Laura Luprano; Michela Alfè; Valentina Gargiulo; Giovanna Ruoppolo; Cesare Oliviero Rossi;doi: 10.3390/su14105790
handle: 20.500.14243/429379 , 20.500.11770/342326
Urban waste management is a hard task: more than 30% of the world’s total production of Municipal Solid Wastes (MSW) is not adequately handled, with landfilling remaining as a common practice. Another source of wastes is the road pavement industry: with a service life of about 10–15 years, asphalts become stiff, susceptible to cracks, and therefore no longer adapted for road paving, so they become wastes. To simultaneously solve these problems, a circular economy-based approach is proposed by the ReScA project, suggesting the use of pyrolysis to treat MSW (or its fractions as Refuse Derived Fuels, RDFs), whose residues (oil and char) can be used as added-value ingredients for the asphalt cycle. Char can be used to prepare better performing and durable asphalts, and oil can be used to regenerate exhaust asphalts, avoiding their landfilling. The proposed approach provides a different and more useful pathway in the end-of-waste (EoW) cycle of urban wastes. This proof of concept is suggested by the following two observations: (i) char is made up by carbonaceous particles highly compatible with the organic nature of bitumens, so its addition can reinforce the overall bitumen structure, increasing its mechanical properties and slowing down the molecular kinetics of its aging process; (ii) oil is rich in hydrocarbons, so it can enrich the poor fraction of the maltene phase in exhaust asphalts. These hypotheses have been proved by testing the residues derived from the pyrolysis of RDFs for the improvement of mechanical characteristics of a representative bitumen sample and its regeneration after aging. The proposed approach is suggested by the physico-chemical study of the materials involved, and aims to show how the chemical knowledge of complex systems, like bituminous materials, can help in solving environmental issues. We hope that this approach will be considered as a model method for the future.
IRIS Cnr arrow_drop_down IRIS CnrArticle . 2022License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/429379/1/Caputo%20et%20al_%20sustainability2022.pdfData sources: IRIS CnrArchivio Istituzionale dell'Università della CalabriaArticle . 2022Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down IRIS CnrArticle . 2022License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/429379/1/Caputo%20et%20al_%20sustainability2022.pdfData sources: IRIS CnrArchivio Istituzionale dell'Università della CalabriaArticle . 2022Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Institute of Combustion Problems P. Caputo1; P. Calandra2*; V. Loise1; M. Porto1; A. Le Pera3; A.A. Abe1; B. Teltayev4; 5*; M.L. Luprano6; M. Alfè7; V. Gargiulo7; G. Ruoppolo7; C. Oliviero Rossi1;doi: 10.18321/ectj1520
handle: 20.500.14243/455162 , 20.500.11770/367347
The production and maintenance of road pavements consume resources and produce wastes that are disposed of in landfills. To make more sustainable this activity, we have envisioned a method based on a circular use of residues (oil and char) from municipal solid waste pyrolysis as useful additives for producing improved asphalts and for recycling old asphalts to generate new ones, reducing at the same time the consumption of resources for the production of new road pavements and the disposal of wastes to landfills. This work aims to show the feasibility of the integration of two processes (thermal treatment of municipal solid waste on one side, and that of road pavement production on the other side) where the products deriving from waste pyrolysis become added-value materials to improve the quality of road pavements. In this contribution, we presented the effect of pyrolysis product addition on asphalt binder (bitumen) preparation and aging. Solid and liquid products, deriving from the pyrolysis of two kinds of wastes (refused derived fuel (RDF) and granulated rubber tyre waste), have been used for the preparation of asphalt binder samples. Rheological tests have been performed to determine the mechanical properties of neat asphalt binder (bitumen) and those enriched with pyrolysis derived products. Measurements to evaluate possible anti-aging effects have been also performed. The collected results indicate that char addition strengthens the overall bitumen intermolecular structure while bio-oil addition exerts a rejuvenating activity.
IRIS Cnr arrow_drop_down Eurasian Chemico-Technological JournalArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2023Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18321/ectj1520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Eurasian Chemico-Technological JournalArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2023Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18321/ectj1520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Institute of Combustion Problems P. Caputo1; P. Calandra2*; V. Loise1; M. Porto1; A. Le Pera3; A.A. Abe1; B. Teltayev4; 5*; M.L. Luprano6; M. Alfè7; V. Gargiulo7; G. Ruoppolo7; C. Oliviero Rossi1;doi: 10.18321/ectj1520
handle: 20.500.14243/455162 , 20.500.11770/367347
The production and maintenance of road pavements consume resources and produce wastes that are disposed of in landfills. To make more sustainable this activity, we have envisioned a method based on a circular use of residues (oil and char) from municipal solid waste pyrolysis as useful additives for producing improved asphalts and for recycling old asphalts to generate new ones, reducing at the same time the consumption of resources for the production of new road pavements and the disposal of wastes to landfills. This work aims to show the feasibility of the integration of two processes (thermal treatment of municipal solid waste on one side, and that of road pavement production on the other side) where the products deriving from waste pyrolysis become added-value materials to improve the quality of road pavements. In this contribution, we presented the effect of pyrolysis product addition on asphalt binder (bitumen) preparation and aging. Solid and liquid products, deriving from the pyrolysis of two kinds of wastes (refused derived fuel (RDF) and granulated rubber tyre waste), have been used for the preparation of asphalt binder samples. Rheological tests have been performed to determine the mechanical properties of neat asphalt binder (bitumen) and those enriched with pyrolysis derived products. Measurements to evaluate possible anti-aging effects have been also performed. The collected results indicate that char addition strengthens the overall bitumen intermolecular structure while bio-oil addition exerts a rejuvenating activity.
IRIS Cnr arrow_drop_down Eurasian Chemico-Technological JournalArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2023Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18321/ectj1520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Eurasian Chemico-Technological JournalArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2023Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18321/ectj1520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu