- home
- Advanced Search
Filters
Year range
-chevron_right GO
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Song, Wang; Mingyi, Xu; Biao, Jin; Urban J, Wünsch; Yanyan, Su; Yifeng, Zhang;pmid: 35030360
Exoelectrogenic biofilm and the associated microbial electrochemical processes have recently been intensively studied for water treatment, but their response to and interaction with polyethylene (PE) microplastics which are widespread in various aquatic environments has never been reported. Here, we investigated how and to what extent PE microplastics would affect the electrochemistry and microbiology of exoelectrogenic biofilm in both microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). When the PE microplastics concentration was increased from 0 to 75 mg/L in the MECs, an apparent decline in the maximum current density (from 1.99 to 0.74 A/m2) and abundance of electroactive bacteria (EAB) in the exoelectrogenic biofilm was noticed. While in the MFCs, the current output was not significantly influenced and the abundance of EAB lightly increased at 25 mg/L microplastics. In addition, PE microplastics restrained the viability of the exoelectrogenic biofilms in both systems, leading to a higher system electrode resistance. Moreover, the microbial community richness and the microplastics-related operational taxonomic units decreased with PE microplastics. Furthermore, the electron transfer-related genes (e.g., pilA and mtrC) and cytochrome c concentration decreased after adding microplastics. This study provides the first glimpse into the influence of PE microplastics on the exoelectrogenic biofilm with the potential mechanisms revealed at the gene level, laying a methodological foundation for the future development of efficient water treatment technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2022.118046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2022.118046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Xue-Ting, Wang; Yi-Feng, Zhang; Bo, Wang; Song, Wang; Xue, Xing; Xi-Jun, Xu; Wen-Zong, Liu; Nan-Qi, Ren; Duu-Jong, Lee; Chuan, Chen;pmid: 34973405
Hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) was proved to increase methane productivity and methane yield of waste activated sludge (WAS) by establishing direct interspecies electron transfer method and enriching functional microorganisms. This review first summarized the pretreatment methods of WAS for MEC-AD and then reviewed the reactor configurations, operation parameters, and the economic benefit of MEC-AD. Furthermore, the enhancement mechanisms of MEC-AD were reviewed based on the analysis of thermodynamics and microbial community. It was found that the decrease of hydrogen partial pressure due to the hydrogenotrophic methanogens enriched in cathodic biofilm and direct interspecies electron transfer between exoelectrogens and anode were the core mechanisms for improving acidogenesis, acetogenesis, and methanogenesis. Finally, the potentially technological issues that need to be addressed to increase energy efficiency in large-scale MEC-AD processes were discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.126641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.126641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Song, Wang; Mingyi, Xu; Biao, Jin; Urban J, Wünsch; Yanyan, Su; Yifeng, Zhang;pmid: 35030360
Exoelectrogenic biofilm and the associated microbial electrochemical processes have recently been intensively studied for water treatment, but their response to and interaction with polyethylene (PE) microplastics which are widespread in various aquatic environments has never been reported. Here, we investigated how and to what extent PE microplastics would affect the electrochemistry and microbiology of exoelectrogenic biofilm in both microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). When the PE microplastics concentration was increased from 0 to 75 mg/L in the MECs, an apparent decline in the maximum current density (from 1.99 to 0.74 A/m2) and abundance of electroactive bacteria (EAB) in the exoelectrogenic biofilm was noticed. While in the MFCs, the current output was not significantly influenced and the abundance of EAB lightly increased at 25 mg/L microplastics. In addition, PE microplastics restrained the viability of the exoelectrogenic biofilms in both systems, leading to a higher system electrode resistance. Moreover, the microbial community richness and the microplastics-related operational taxonomic units decreased with PE microplastics. Furthermore, the electron transfer-related genes (e.g., pilA and mtrC) and cytochrome c concentration decreased after adding microplastics. This study provides the first glimpse into the influence of PE microplastics on the exoelectrogenic biofilm with the potential mechanisms revealed at the gene level, laying a methodological foundation for the future development of efficient water treatment technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2022.118046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2022.118046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Xue-Ting, Wang; Yi-Feng, Zhang; Bo, Wang; Song, Wang; Xue, Xing; Xi-Jun, Xu; Wen-Zong, Liu; Nan-Qi, Ren; Duu-Jong, Lee; Chuan, Chen;pmid: 34973405
Hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) was proved to increase methane productivity and methane yield of waste activated sludge (WAS) by establishing direct interspecies electron transfer method and enriching functional microorganisms. This review first summarized the pretreatment methods of WAS for MEC-AD and then reviewed the reactor configurations, operation parameters, and the economic benefit of MEC-AD. Furthermore, the enhancement mechanisms of MEC-AD were reviewed based on the analysis of thermodynamics and microbial community. It was found that the decrease of hydrogen partial pressure due to the hydrogenotrophic methanogens enriched in cathodic biofilm and direct interspecies electron transfer between exoelectrogens and anode were the core mechanisms for improving acidogenesis, acetogenesis, and methanogenesis. Finally, the potentially technological issues that need to be addressed to increase energy efficiency in large-scale MEC-AD processes were discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.126641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.126641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu