- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- Energy Research
- 12. Responsible consumption
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Netherlands, United KingdomPublisher:Springer Science and Business Media LLC Pete Smith; Hugo Valin; Petr Havlik; Mario Herrero; Zhaohai Bai; Charlotte Janssens; Charlotte Janssens; Hao Zhao; Hao Zhao; Lin Ma; Michiel van Dijk; Michiel van Dijk; Michael Obersteiner; Michael Obersteiner; Jinfeng Chang; Jinfeng Chang;handle: 2164/19343
Satisfying China’s food demand without harming the environment is one of the greatest sustainability challenges for the coming decades. Here we provide a comprehensive forward-looking assessment of the environmental impacts of China’s growing demand on the country itself and on its trading partners. We find that the increasing food demand, especially for livestock products (~16%–30% across all scenarios), would domestically require ~3–12 Mha of additional pasture between 2020 and 2050, resulting in ~−2% to +16% growth in agricultural greenhouse gas (GHG) emissions. The projected ~15%–24% reliance on agricultural imports in 2050 would result in ~90–175 Mha of agricultural land area and ~88–226 MtCO2-equivalent yr−1of GHG emissions virtually imported to China, which account for ~26%–46% and ~13%–32% of China’s global environmental impacts, respectively. The distribution of the environmental impacts between China and the rest of the world would substantially depend on development of trade openness. Thus, to limit the negative environmental impacts of its growing food consumption, besides domestic policies, China needs to also take responsibility in the development of sustainable international trade.
Nature Sustainabilit... arrow_drop_down Nature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-021-00784-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 196 citations 196 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature Sustainabilit... arrow_drop_down Nature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-021-00784-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2023 United Kingdom, Netherlands, Switzerland, France, FrancePublisher:Springer International Publishing Mario Herrero; Daniel Mason-D'Croz; Philip K. Thornton; Jessica Fanzo; Jonathan Rushton; Cécile Godde; Alexandra L. Bellows; Adrian de Groot; Jeda Palmer; Jinfeng Chang; H.H.E. van Zanten; Barbara Wieland; Fabrice DeClerck; Stella Nordhagen; Ty Beal; Carlos González; M. Gill;AbstractLivestock are a critically important component of the food system, although the sector needs a profound transformation to ensure that it contributes to a rapid transition towards sustainable food systems. This chapter reviews and synthesises the evidence available on changes in demand for livestock products in the last few decades, and the multiple socio-economic roles that livestock have around the world. We also describe the nutrition, health, and environmental impacts for which the sector is responsible. We propose eight critical actions for transitioning towards a more sustainable operating space for livestock. (1) Facilitate shifts in the consumption of animal source foods (ASF), recognising that global reductions will be required, especially in communities with high consumption levels, while promoting increased levels in vulnerable groups, including the undernourished, pregnant women and the elderly. (2) Continue work towards the sustainable intensification of livestock systems, paying particular attention to animal welfare, food-feed competition, blue water use, disease transmission and perverse economic incentives. (3) Embrace the potential of circularity in livestock systems as a way of partially decoupling livestock from land. (4) Adopt practices that lead to the direct or indirect mitigation of greenhouse gases. (5) Adopt some of the vast array of novel technologies at scale and design incentive mechanisms for their rapid deployment. (6) Diversify the protein sources available for human consumption and feed, focusing on the high-quality alternative protein sources that have lower environmental impacts. (7) Tackle antimicrobial resistance effectively through a combination of technology and new regulations, particularly for the fast-growing poultry and pork sectors and for feedlot operations. (8) Implement true cost of food and true-pricing approaches to ASF consumption.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Part of book or chapter of book . 2023 . Peer-reviewedFull-Text: https://boris.unibe.ch/182518/1/Wieland_Livestock_and_Sustainable_Food_...978-3-031-15703-5_20.pdfData sources: Bern Open Repository and Information System (BORIS)CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126681Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEdinburgh Research ExplorerPart of book or chapter of book . 2023Data sources: Edinburgh Research ExplorerWageningen Staff PublicationsPart of book or chapter of book . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-15703-5_20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Part of book or chapter of book . 2023 . Peer-reviewedFull-Text: https://boris.unibe.ch/182518/1/Wieland_Livestock_and_Sustainable_Food_...978-3-031-15703-5_20.pdfData sources: Bern Open Repository and Information System (BORIS)CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126681Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEdinburgh Research ExplorerPart of book or chapter of book . 2023Data sources: Edinburgh Research ExplorerWageningen Staff PublicationsPart of book or chapter of book . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-15703-5_20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:American Chemical Society (ACS) Funded by:EC | IMBALANCE-PEC| IMBALANCE-PWei Li; Wei Li; Lei Zhu; Jinfeng Chang; Philippe Ciais; Daniel S. Goll; Qing Zhao; Mengjie Han; Jingmeng Wang;pmid: 34288664
Bioenergy with carbon capture and storage (BECCS) is a key option for removing CO2 from the atmosphere over time to achieve climate mitigation. However, an overlooked impact of BECCS is the amount of nutrients required to sustain the production. Here, we use an observation-driven approach to estimate the future bioenergy biomass production for land-use scenarios maximizing BECCS and the pertaining nutrient requirements. The projected global biomass production during the 21st century is comparable to the CO2 removal target for 2 °C warming scenarios. However, 9-19% of this future production hinges on agrotechnology improvement, which remains uncertain. Additional nutrients from fertilizers, corresponding to 56.8 ± 6.1% of the present-day agricultural fertilizer, will be needed to replenish the nutrients removed in harvested biomass at the end of the century, resulting in additional costs and greenhouse gas emissions. Our study reveals the nutrient challenges associated with BECCS and calls for additional management efforts to grow bioenergy crops in a sustainable way.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c02238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c02238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, BelgiumPublisher:Public Library of Science (PLoS) Funded by:EC | ANIMALCHANGEEC| ANIMALCHANGEChang, Jinfeng; Viovy, Nicolas; Vuichard, Nicolas; Ciais, Philippe; Campioli, Matteo; Klumpp, Katja; Martin, Raphaël; Leip, Adrian; Soussana, Jean-François;About 25% of European livestock intake is based on permanent and sown grasslands. To fulfill rising demand for animal products, an intensification of livestock production may lead to an increased consumption of crop and compound feeds. In order to preserve an economically and environmentally sustainable agriculture, a more forage based livestock alimentation may be an advantage. However, besides management, grassland productivity is highly vulnerable to climate (i.e., temperature, precipitation, CO2 concentration), and spatial information about European grassland productivity in response to climate change is scarce. The process-based vegetation model ORCHIDEE-GM, containing an explicit representation of grassland management (i.e., herbage mowing and grazing), is used here to estimate changes in potential productivity and potential grass-fed ruminant livestock density across European grasslands over the period 1961-2010. Here "potential grass-fed ruminant livestock density" denotes the maximum density of livestock that can be supported by grassland productivity in each 25 km × 25 km grid cell. In reality, livestock density could be higher than potential (e.g., if additional feed is supplied to animals) or lower (e.g., in response to economic factors, pedo-climatic and biotic conditions ignored by the model, or policy decisions that can for instance reduce livestock numbers). When compared to agricultural statistics (Eurostat and FAOstat), ORCHIDEE-GM gave a good reproduction of the regional gradients of annual grassland productivity and ruminant livestock density. The model however tends to systematically overestimate the absolute values of productivity in most regions, suggesting that most grid cells remain below their potential grassland productivity due to possible nutrient and biotic limitations on plant growth. When ORCHIDEE-GM was run for the period 1961-2010 with variable climate and rising CO2, an increase of potential annual production (over 3%) per decade was found: 97% of this increase was attributed to the rise in CO2, -3% to climate trends and 15% to trends in nitrogen fertilization and deposition. When compared with statistical data, ORCHIDEE-GM captures well the observed phase of climate-driven interannual variability in grassland production well, whereas the magnitude of the interannual variability in modeled productivity is larger than the statistical data. Regional grass-fed livestock numbers can be reproduced by ORCHIDEE-GM based on its simple assumptions and parameterization about productivity being the only limiting factor to define the sustainable number of animals per unit area. Causes for regional model-data misfits are discussed, including uncertainties in farming practices (e.g., nitrogen fertilizer application, and mowing and grazing intensity) and in ruminant diet composition, as well as uncertainties in the statistical data and in model parameter values.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01806202Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01806202Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0127554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01806202Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01806202Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0127554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, AustriaPublisher:Springer Science and Business Media LLC Funded by:UKRI | Soils Research to deliver..., UKRI | Delivering Food Security ..., EC | IMBALANCE-P +2 projectsUKRI| Soils Research to deliver Greenhouse Gas REmovals and Abatement Technologies (Soils-R-GGREAT) ,UKRI| Delivering Food Security on Limited Land (DEVIL) ,EC| IMBALANCE-P ,EC| VERIFY ,UKRI| U-Grass: Understanding and enhancing soil ecosystem services and resilience in UK grass and croplandsJinfeng Chang; Philippe Ciais; Thomas Gasser; Pete Smith; Mario Herrero; Petr Havlík; Michael Obersteiner; Bertrand Guenet; Daniel Goll; Wei Li; Victoria Naipal; Shushi Peng; Chunjing Qiu; Hanqin Tian; Nicolas Viovy; Chao Ye; Dan Zhu;pmid: 33402687
pmc: PMC7785734
AbstractGrasslands absorb and release carbon dioxide (CO2), emit methane (CH4) from grazing livestock, and emit nitrous oxide (N2O) from soils. Little is known about how the fluxes of these three greenhouse gases, from managed and natural grasslands worldwide, have contributed to past climate change, or the roles of managed pastures versus natural grasslands. Here, global trends and regional patterns of the full greenhouse gas balance of grasslands are estimated for the period 1750 to 2012. A new spatially explicit land surface model is applied, to separate the direct effects of human activities from land management and the indirect effects from climate change, increasing CO2 and regional changes in nitrogen deposition. Direct human management activities are simulated to have caused grasslands to switch from a sink to a source of greenhouse gas, because of increased livestock numbers and accelerated conversion of natural lands to pasture. However, climate change drivers contributed a net carbon sink in soil organic matter, mainly from the increased productivity of grasslands due to increased CO2 and nitrogen deposition. The net radiative forcing of all grasslands is currently close to neutral, but has been increasing since the 1960s. Here, we show that the net global climate warming caused by managed grassland cancels the net climate cooling from carbon sinks in sparsely grazed and natural grasslands. In the face of future climate change and increased demand for livestock products, these findings highlight the need to use sustainable management to preserve and enhance soil carbon storage in grasslands and to reduce greenhouse gas emissions from managed grasslands.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20406-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 173 citations 173 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20406-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Netherlands, United KingdomPublisher:Springer Science and Business Media LLC Pete Smith; Hugo Valin; Petr Havlik; Mario Herrero; Zhaohai Bai; Charlotte Janssens; Charlotte Janssens; Hao Zhao; Hao Zhao; Lin Ma; Michiel van Dijk; Michiel van Dijk; Michael Obersteiner; Michael Obersteiner; Jinfeng Chang; Jinfeng Chang;handle: 2164/19343
Satisfying China’s food demand without harming the environment is one of the greatest sustainability challenges for the coming decades. Here we provide a comprehensive forward-looking assessment of the environmental impacts of China’s growing demand on the country itself and on its trading partners. We find that the increasing food demand, especially for livestock products (~16%–30% across all scenarios), would domestically require ~3–12 Mha of additional pasture between 2020 and 2050, resulting in ~−2% to +16% growth in agricultural greenhouse gas (GHG) emissions. The projected ~15%–24% reliance on agricultural imports in 2050 would result in ~90–175 Mha of agricultural land area and ~88–226 MtCO2-equivalent yr−1of GHG emissions virtually imported to China, which account for ~26%–46% and ~13%–32% of China’s global environmental impacts, respectively. The distribution of the environmental impacts between China and the rest of the world would substantially depend on development of trade openness. Thus, to limit the negative environmental impacts of its growing food consumption, besides domestic policies, China needs to also take responsibility in the development of sustainable international trade.
Nature Sustainabilit... arrow_drop_down Nature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-021-00784-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 196 citations 196 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature Sustainabilit... arrow_drop_down Nature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-021-00784-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2023 United Kingdom, Netherlands, Switzerland, France, FrancePublisher:Springer International Publishing Mario Herrero; Daniel Mason-D'Croz; Philip K. Thornton; Jessica Fanzo; Jonathan Rushton; Cécile Godde; Alexandra L. Bellows; Adrian de Groot; Jeda Palmer; Jinfeng Chang; H.H.E. van Zanten; Barbara Wieland; Fabrice DeClerck; Stella Nordhagen; Ty Beal; Carlos González; M. Gill;AbstractLivestock are a critically important component of the food system, although the sector needs a profound transformation to ensure that it contributes to a rapid transition towards sustainable food systems. This chapter reviews and synthesises the evidence available on changes in demand for livestock products in the last few decades, and the multiple socio-economic roles that livestock have around the world. We also describe the nutrition, health, and environmental impacts for which the sector is responsible. We propose eight critical actions for transitioning towards a more sustainable operating space for livestock. (1) Facilitate shifts in the consumption of animal source foods (ASF), recognising that global reductions will be required, especially in communities with high consumption levels, while promoting increased levels in vulnerable groups, including the undernourished, pregnant women and the elderly. (2) Continue work towards the sustainable intensification of livestock systems, paying particular attention to animal welfare, food-feed competition, blue water use, disease transmission and perverse economic incentives. (3) Embrace the potential of circularity in livestock systems as a way of partially decoupling livestock from land. (4) Adopt practices that lead to the direct or indirect mitigation of greenhouse gases. (5) Adopt some of the vast array of novel technologies at scale and design incentive mechanisms for their rapid deployment. (6) Diversify the protein sources available for human consumption and feed, focusing on the high-quality alternative protein sources that have lower environmental impacts. (7) Tackle antimicrobial resistance effectively through a combination of technology and new regulations, particularly for the fast-growing poultry and pork sectors and for feedlot operations. (8) Implement true cost of food and true-pricing approaches to ASF consumption.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Part of book or chapter of book . 2023 . Peer-reviewedFull-Text: https://boris.unibe.ch/182518/1/Wieland_Livestock_and_Sustainable_Food_...978-3-031-15703-5_20.pdfData sources: Bern Open Repository and Information System (BORIS)CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126681Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEdinburgh Research ExplorerPart of book or chapter of book . 2023Data sources: Edinburgh Research ExplorerWageningen Staff PublicationsPart of book or chapter of book . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-15703-5_20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Part of book or chapter of book . 2023 . Peer-reviewedFull-Text: https://boris.unibe.ch/182518/1/Wieland_Livestock_and_Sustainable_Food_...978-3-031-15703-5_20.pdfData sources: Bern Open Repository and Information System (BORIS)CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126681Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEdinburgh Research ExplorerPart of book or chapter of book . 2023Data sources: Edinburgh Research ExplorerWageningen Staff PublicationsPart of book or chapter of book . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-15703-5_20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:American Chemical Society (ACS) Funded by:EC | IMBALANCE-PEC| IMBALANCE-PWei Li; Wei Li; Lei Zhu; Jinfeng Chang; Philippe Ciais; Daniel S. Goll; Qing Zhao; Mengjie Han; Jingmeng Wang;pmid: 34288664
Bioenergy with carbon capture and storage (BECCS) is a key option for removing CO2 from the atmosphere over time to achieve climate mitigation. However, an overlooked impact of BECCS is the amount of nutrients required to sustain the production. Here, we use an observation-driven approach to estimate the future bioenergy biomass production for land-use scenarios maximizing BECCS and the pertaining nutrient requirements. The projected global biomass production during the 21st century is comparable to the CO2 removal target for 2 °C warming scenarios. However, 9-19% of this future production hinges on agrotechnology improvement, which remains uncertain. Additional nutrients from fertilizers, corresponding to 56.8 ± 6.1% of the present-day agricultural fertilizer, will be needed to replenish the nutrients removed in harvested biomass at the end of the century, resulting in additional costs and greenhouse gas emissions. Our study reveals the nutrient challenges associated with BECCS and calls for additional management efforts to grow bioenergy crops in a sustainable way.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c02238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c02238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, BelgiumPublisher:Public Library of Science (PLoS) Funded by:EC | ANIMALCHANGEEC| ANIMALCHANGEChang, Jinfeng; Viovy, Nicolas; Vuichard, Nicolas; Ciais, Philippe; Campioli, Matteo; Klumpp, Katja; Martin, Raphaël; Leip, Adrian; Soussana, Jean-François;About 25% of European livestock intake is based on permanent and sown grasslands. To fulfill rising demand for animal products, an intensification of livestock production may lead to an increased consumption of crop and compound feeds. In order to preserve an economically and environmentally sustainable agriculture, a more forage based livestock alimentation may be an advantage. However, besides management, grassland productivity is highly vulnerable to climate (i.e., temperature, precipitation, CO2 concentration), and spatial information about European grassland productivity in response to climate change is scarce. The process-based vegetation model ORCHIDEE-GM, containing an explicit representation of grassland management (i.e., herbage mowing and grazing), is used here to estimate changes in potential productivity and potential grass-fed ruminant livestock density across European grasslands over the period 1961-2010. Here "potential grass-fed ruminant livestock density" denotes the maximum density of livestock that can be supported by grassland productivity in each 25 km × 25 km grid cell. In reality, livestock density could be higher than potential (e.g., if additional feed is supplied to animals) or lower (e.g., in response to economic factors, pedo-climatic and biotic conditions ignored by the model, or policy decisions that can for instance reduce livestock numbers). When compared to agricultural statistics (Eurostat and FAOstat), ORCHIDEE-GM gave a good reproduction of the regional gradients of annual grassland productivity and ruminant livestock density. The model however tends to systematically overestimate the absolute values of productivity in most regions, suggesting that most grid cells remain below their potential grassland productivity due to possible nutrient and biotic limitations on plant growth. When ORCHIDEE-GM was run for the period 1961-2010 with variable climate and rising CO2, an increase of potential annual production (over 3%) per decade was found: 97% of this increase was attributed to the rise in CO2, -3% to climate trends and 15% to trends in nitrogen fertilization and deposition. When compared with statistical data, ORCHIDEE-GM captures well the observed phase of climate-driven interannual variability in grassland production well, whereas the magnitude of the interannual variability in modeled productivity is larger than the statistical data. Regional grass-fed livestock numbers can be reproduced by ORCHIDEE-GM based on its simple assumptions and parameterization about productivity being the only limiting factor to define the sustainable number of animals per unit area. Causes for regional model-data misfits are discussed, including uncertainties in farming practices (e.g., nitrogen fertilizer application, and mowing and grazing intensity) and in ruminant diet composition, as well as uncertainties in the statistical data and in model parameter values.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01806202Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01806202Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0127554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01806202Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01806202Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0127554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, AustriaPublisher:Springer Science and Business Media LLC Funded by:UKRI | Soils Research to deliver..., UKRI | Delivering Food Security ..., EC | IMBALANCE-P +2 projectsUKRI| Soils Research to deliver Greenhouse Gas REmovals and Abatement Technologies (Soils-R-GGREAT) ,UKRI| Delivering Food Security on Limited Land (DEVIL) ,EC| IMBALANCE-P ,EC| VERIFY ,UKRI| U-Grass: Understanding and enhancing soil ecosystem services and resilience in UK grass and croplandsJinfeng Chang; Philippe Ciais; Thomas Gasser; Pete Smith; Mario Herrero; Petr Havlík; Michael Obersteiner; Bertrand Guenet; Daniel Goll; Wei Li; Victoria Naipal; Shushi Peng; Chunjing Qiu; Hanqin Tian; Nicolas Viovy; Chao Ye; Dan Zhu;pmid: 33402687
pmc: PMC7785734
AbstractGrasslands absorb and release carbon dioxide (CO2), emit methane (CH4) from grazing livestock, and emit nitrous oxide (N2O) from soils. Little is known about how the fluxes of these three greenhouse gases, from managed and natural grasslands worldwide, have contributed to past climate change, or the roles of managed pastures versus natural grasslands. Here, global trends and regional patterns of the full greenhouse gas balance of grasslands are estimated for the period 1750 to 2012. A new spatially explicit land surface model is applied, to separate the direct effects of human activities from land management and the indirect effects from climate change, increasing CO2 and regional changes in nitrogen deposition. Direct human management activities are simulated to have caused grasslands to switch from a sink to a source of greenhouse gas, because of increased livestock numbers and accelerated conversion of natural lands to pasture. However, climate change drivers contributed a net carbon sink in soil organic matter, mainly from the increased productivity of grasslands due to increased CO2 and nitrogen deposition. The net radiative forcing of all grasslands is currently close to neutral, but has been increasing since the 1960s. Here, we show that the net global climate warming caused by managed grassland cancels the net climate cooling from carbon sinks in sparsely grazed and natural grasslands. In the face of future climate change and increased demand for livestock products, these findings highlight the need to use sustainable management to preserve and enhance soil carbon storage in grasslands and to reduce greenhouse gas emissions from managed grasslands.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20406-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 173 citations 173 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20406-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu