- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Saqib Toor; Asbjørn Haaning Nielsen; Thomas Helmer Pedersen; Lasse Rosendahl; Federica Conti;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2020.105630&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2020.105630&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Elsevier BV Federica Conti; Saqib Toor; Asbjørn Haaning Nielsen; Lasse Rosendahl; Ayaz Ali Shah; Ayaz Ali Shah;With the rapid growth in population and urbanization, sustainable disposal of sewage sludge has become a prominent problem worldwide. Therefore, an adequate treatment is required to reduce the environmental impacts created from traditional methods such as incineration, landfill, etc. In this context, sewage sludge was liquefied hydrothermally under sub-supercritical conditions with and without catalyst (K2CO3). The effect of temperature and alkali catalyst on product distribution was investigated. Obtained results showed that the temperature had a negligible influence, whereas catalyst slightly improved the bio-crude yield and quality for both sub-supercritical conditions (350 and 400 °C). Bio-crude contained N-containing compounds, ketones, phenols, acids, and long-chain hydrocarbons. Carbon and nitrogen recoveries revealed that 58–67% of the carbon went into bio-crude, while the majority of the nitrogen was transferred to the aqueous phase. ICP-AES analysis indicated that approximately 80% of the heavy metals were concentrated in the solid phase. The leaching action of citric acid with sewage sludge not only removed 40% of ash content but also reduced 38% of the fat content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2020.105504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2020.105504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Authors: Tahir Hussain Seehar; Tahir Hussain Seehar; Asbjørn Haaning Nielsen; Lasse Rosendahl; +4 AuthorsTahir Hussain Seehar; Tahir Hussain Seehar; Asbjørn Haaning Nielsen; Lasse Rosendahl; Saqib Toor; Thomas Helmer Pedersen; Ayaz Ali Shah; Ayaz Ali Shah;Heavy metals (HMs) are undoubtedly an unavoidable nuisance in today's era, and their appropriate handling anddisposal carry the utmost significance. Construction wood (CW), specifically hazardous and non-hazardous woodis contaminated due to a mixture of different materials like paints, coatings, and copper layers, etc. that needproper attention for safe disposal. Wood waste from building and urban waste streams is abundantly available,which essentials to manage appropriately for energy recovery. In that respect, this study focused on the disposaloption of contaminated wood waste via hydrothermal liquefaction (HTL) by turning waste into biocrude. CW iscategorized into four types named Untreated wood (UNW), Non-hazardous wood (NHZW), Hazardous wood(HZW), and Mixed wood (MXW). Maximum biocrude yield was obtained by the liquefaction of UNW followed byNHZW, HZW, and MXW in the range between 24.86 and 36.35 wt%. Additionally, the fate of selected heavymetals (chromium, copper, nickel, zinc) was investigated in HTL products. It was concluded that, by the liquefactionof CW, the majority of HMs shifted to the solid residue. The negligible amount of HMs merged intothe biocrude and aqueous phase. This study suggests HTL as a promising and sustainable route for the disposal ofcontaminated wood waste by turning into higher added value (or high quality) products especially biocrude withless HMs concentration as a fruitful product at large scale.
VBN arrow_drop_down Fuel Processing TechnologyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2020.106621&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert VBN arrow_drop_down Fuel Processing TechnologyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2020.106621&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Elsevier BV Federica Conti; Saqib S. Toor; Thomas H. Pedersen; Tahir H. Seehar; Asbjørn H. Nielsen; Lasse A. Rosendahl;Intense farming activities and the growth of the population produce increasing amounts of wastes, which represent an environmental concern and require an adequate disposal. Animal manure, fish sludge, and sewage sludge are all wet wastes consisting of organic, but also inorganic material. Hydrothermal liquefaction is proposed to treat these wastes as wet feedstocks can be processed without any drying. The organic fraction is valorized, being converted into biocrude oil, while the inorganics are recovered primarily in the solid products. The decomposition of these wastes is investigated under sub- (350 °C) and supercritical (400 °C) conditions, and with and without the addition of K2CO3 catalyst with focus on the biocrude yield and quality. High yields of biocrude are obtained from the liquefaction of all the feedstocks, especially from fish sludge (ca. 50% d.a.f.) and sewage sludge (ca. 45% d.a.f.). A reduction in biocrude production is observed at supercritical conditions for animal wastes, however, the quality of manure-derived biocrudes is improved when using supercritical conditions and by the addition of the catalyst. Carbon is primarily recovered in the biocrude: 50–60% for swine and cow manure, 55–80% for fish and sewage sludge. Considerable quantities of nitrogen and sulfur are transferred to the biocrude, respectively 26–60% and 33–66%. Most of the inorganics (e.g. Ca, Mg, P) are recovered in the solids (above 70%), except for potassium and sodium, which show a higher degree of solubility in the aqueous phase.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 DenmarkPublisher:MDPI AG Funded by:EC | NextGenRoadFuelsEC| NextGenRoadFuelsAuthors: Ayaz Ali Shah; Saqib Sohail Toor; Asbjørn Haaning Nielsen; Thomas Helmer Pedersen; +1 AuthorsAyaz Ali Shah; Saqib Sohail Toor; Asbjørn Haaning Nielsen; Thomas Helmer Pedersen; Lasse Aistrup Rosendahl;doi: 10.3390/en14123488
The management and optimization of the aqueous phase are the major challenges that hinder the promotion of hydrothermal liquefaction (HTL) technology on a commercial scale. Recently, many studies reported about the accumulation of the N-content in the bio-crude with continuous recycling of the aqueous phase from high protein-containing biomass. In the present study, sewage sludge was processed at 350 °C in an autoclave. The produced aqueous phase was treated with activated carbon, and its subsequent recycling effect on the properties of the bio-crude and aqueous phase was investigated. By contacting the aqueous phase with activated carbon, 38–43% of the total nitrogen was removed from the aqueous phase. After applying the treated aqueous phase recycling, the energy recovery of the bio-crude increased from 50 to 61% after three rounds of recycling. From overall carbon/nitrogen recoveries, 50 to 56% of the carbon was transferred to the bio-crude phase and more than 50% of the nitrogen remained in the aqueous phase. The aqueous phase contained mostly of N&O-heterocyclic compounds, small chain organic acids, and amides. ICP-AES analysis showed that more than 80% of the inorganic elements were concentrated into the solid phase.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3488/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3488/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Royal Society of Chemistry (RSC) Funded by:EC | 4REFINERYEC| 4REFINERYAuthors: Tahir Hussain Seehar; Saqib Sohail Toor; Kamaldeep Sharma; Asbjørn Haaning Nielsen; +2 AuthorsTahir Hussain Seehar; Saqib Sohail Toor; Kamaldeep Sharma; Asbjørn Haaning Nielsen; Thomas Helmer Pedersen; Lasse Aistrup Rosendahl;doi: 10.1039/d0se01634a
In the present study, eucalyptus biomass was processed to produce biocrude via hydrothermal liquefaction.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se01634a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se01634a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2009 Netherlands, Netherlands, DenmarkPublisher:Informa UK Limited Jensen, H.S.; Nielsen, A.H.; Lens, P.N.L.; Hvitved-Jacobsen, Th.; Vollertsen, J.;pmid: 19950471
Corrosion of concrete sewer pipes caused by hydrogen sulphide is a problem in many sewer networks. The mechanisms of production and fate of hydrogen sulphide in the sewer biofilms and wastewater as well as its release to the sewer atmosphere are largely understood. In contrast, the mechanisms of the uptake of hydrogen sulphide on the concrete surfaces and subsequent concrete corrosion are basically unknown. To shed light on these mechanisms, the uptake of hydrogen sulphide from a sewer gas phase was compared to the biological hydrogen sulphide removal potential of the concrete corrosion products. The results showed that both microbial degradation at and sorption to the concrete surfaces were important for the uptake of hydrogen sulphide on the concrete surfaces.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09593330902894356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09593330902894356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 DenmarkPublisher:Wiley Authors: Vollertsen, J.; Hvitved-Jacobsen, T.; Nielsen, A. H.;Wastewater quality characteristics in terms of biomass, its substrates, and the corresponding kinetic and stoichiometric parameters were determined based on 109 wastewater samples originating from five different campaigns in four different sewer networks. Quality parameters were determined by model calibration of measured wastewater oxygen uptake rates applying a model that describes the aerobic breakdown of wastewater organic matter. Thereafter, the distributions of the parameters were analyzed. Two of the five datasets were obtained at the upstream end of a five‐km‐long, intercepting gravity sewer. For each of these upstream wastewater samples, downstream samples were collected with a delay corresponding to the residence time. The upstream distributions of the wastewater composition were used as boundary conditions for a Monte Carlo simulation. The calculated downstream distributions were compared to the measured downstream distributions and good agreement was observed.
Aalborg University R... arrow_drop_down Water Environment ResearchArticle . 2005 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/j.1554-7531.2005.tb00292.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Water Environment ResearchArticle . 2005 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/j.1554-7531.2005.tb00292.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Contribution for newspaper or weekly magazine , Journal , Other literature type 2006 DenmarkPublisher:Water Environment Federation Authors: Vollertsen, Jes; Nielsen, Asbjørn Haaning; Jensen, Henriette Stokbro; Hvitved-Jacobsen, Thorkild;pmid: 18330221
A conceptual model that simulates the formation and fate of odorous substances in branched collection systems is presented. The model predicts the activity of the relevant biomass phenotypes under aerobic, anoxic, and anaerobic conditions in force mains and gravity sewers. The formation and fate of individual, malodorous substances in the bulk water, biofilms, and sediments are modeled. The release of odorous compounds from the bulk water to the sewer gas phase, their fate in the gas phase, and their subsequent release into the urban atmosphere is simulated. Examples of model application include the prediction of hydrogen sulfide and malodorous fermentation products from force mains and gravity sewers.
Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2006Data sources: Aalborg University Research PortalWater Environment ResearchArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefProceedings of the Water Environment FederationArticle . 2006 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2175/193864706783749648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2006Data sources: Aalborg University Research PortalWater Environment ResearchArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefProceedings of the Water Environment FederationArticle . 2006 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2175/193864706783749648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:Elsevier BV Federica Conti; Saqib S. Toor; Thomas H. Pedersen; Asbjørn H. Nielsen; Lasse A. Rosendahl;Willows are increasingly used as natural filters to treat nutrient-rich wastewater. Their natural tendency to absorb minerals is exploited both for the nutrients and the metals, which are contained in the wastewater. This application allows addressing environmental concerns related to wastewater management and, at the same time, achieving higher biomass yields. However, the end-use of this biomass is often a simple incineration for production of heat and power. The present study proposes, alternatively, to use willow biomass, grown on wastewater irrigated fields, as feedstock for the hydrothermal liquefaction process. The thermochemical conversion route allows the valorization of the organic fraction of the biomass into a biocrude oil, and simultaneously collecting and preserving the inorganic elements in the effluent products. The willow was converted at supercritical water conditions (400 °C) for 15 min in a micro-batch reactor (10 cm 3), and high mass yields (39.7%) of energy dense (38.6 MJ kg −1) biocrude oil were obtained. It was found that most inorganics, including phosphorus (76% of total P on a mass basis), are mainly transferred to the solid products. The concentration of the elements in the solids eases their recovery and re-use for soil amendment. A different tendency was observed for potassium and sodium, which were almost exclusively collected in the aqueous phase (above 88% for both K and Na on a mass basis). Significant quantities of nitrogen and sulfur, and some metals, were transferred to the biocrude oil, however its quality resulted overall unaffected.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.07.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.07.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Saqib Toor; Asbjørn Haaning Nielsen; Thomas Helmer Pedersen; Lasse Rosendahl; Federica Conti;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2020.105630&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2020.105630&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Elsevier BV Federica Conti; Saqib Toor; Asbjørn Haaning Nielsen; Lasse Rosendahl; Ayaz Ali Shah; Ayaz Ali Shah;With the rapid growth in population and urbanization, sustainable disposal of sewage sludge has become a prominent problem worldwide. Therefore, an adequate treatment is required to reduce the environmental impacts created from traditional methods such as incineration, landfill, etc. In this context, sewage sludge was liquefied hydrothermally under sub-supercritical conditions with and without catalyst (K2CO3). The effect of temperature and alkali catalyst on product distribution was investigated. Obtained results showed that the temperature had a negligible influence, whereas catalyst slightly improved the bio-crude yield and quality for both sub-supercritical conditions (350 and 400 °C). Bio-crude contained N-containing compounds, ketones, phenols, acids, and long-chain hydrocarbons. Carbon and nitrogen recoveries revealed that 58–67% of the carbon went into bio-crude, while the majority of the nitrogen was transferred to the aqueous phase. ICP-AES analysis indicated that approximately 80% of the heavy metals were concentrated in the solid phase. The leaching action of citric acid with sewage sludge not only removed 40% of ash content but also reduced 38% of the fat content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2020.105504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2020.105504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Authors: Tahir Hussain Seehar; Tahir Hussain Seehar; Asbjørn Haaning Nielsen; Lasse Rosendahl; +4 AuthorsTahir Hussain Seehar; Tahir Hussain Seehar; Asbjørn Haaning Nielsen; Lasse Rosendahl; Saqib Toor; Thomas Helmer Pedersen; Ayaz Ali Shah; Ayaz Ali Shah;Heavy metals (HMs) are undoubtedly an unavoidable nuisance in today's era, and their appropriate handling anddisposal carry the utmost significance. Construction wood (CW), specifically hazardous and non-hazardous woodis contaminated due to a mixture of different materials like paints, coatings, and copper layers, etc. that needproper attention for safe disposal. Wood waste from building and urban waste streams is abundantly available,which essentials to manage appropriately for energy recovery. In that respect, this study focused on the disposaloption of contaminated wood waste via hydrothermal liquefaction (HTL) by turning waste into biocrude. CW iscategorized into four types named Untreated wood (UNW), Non-hazardous wood (NHZW), Hazardous wood(HZW), and Mixed wood (MXW). Maximum biocrude yield was obtained by the liquefaction of UNW followed byNHZW, HZW, and MXW in the range between 24.86 and 36.35 wt%. Additionally, the fate of selected heavymetals (chromium, copper, nickel, zinc) was investigated in HTL products. It was concluded that, by the liquefactionof CW, the majority of HMs shifted to the solid residue. The negligible amount of HMs merged intothe biocrude and aqueous phase. This study suggests HTL as a promising and sustainable route for the disposal ofcontaminated wood waste by turning into higher added value (or high quality) products especially biocrude withless HMs concentration as a fruitful product at large scale.
VBN arrow_drop_down Fuel Processing TechnologyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2020.106621&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert VBN arrow_drop_down Fuel Processing TechnologyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2020.106621&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Elsevier BV Federica Conti; Saqib S. Toor; Thomas H. Pedersen; Tahir H. Seehar; Asbjørn H. Nielsen; Lasse A. Rosendahl;Intense farming activities and the growth of the population produce increasing amounts of wastes, which represent an environmental concern and require an adequate disposal. Animal manure, fish sludge, and sewage sludge are all wet wastes consisting of organic, but also inorganic material. Hydrothermal liquefaction is proposed to treat these wastes as wet feedstocks can be processed without any drying. The organic fraction is valorized, being converted into biocrude oil, while the inorganics are recovered primarily in the solid products. The decomposition of these wastes is investigated under sub- (350 °C) and supercritical (400 °C) conditions, and with and without the addition of K2CO3 catalyst with focus on the biocrude yield and quality. High yields of biocrude are obtained from the liquefaction of all the feedstocks, especially from fish sludge (ca. 50% d.a.f.) and sewage sludge (ca. 45% d.a.f.). A reduction in biocrude production is observed at supercritical conditions for animal wastes, however, the quality of manure-derived biocrudes is improved when using supercritical conditions and by the addition of the catalyst. Carbon is primarily recovered in the biocrude: 50–60% for swine and cow manure, 55–80% for fish and sewage sludge. Considerable quantities of nitrogen and sulfur are transferred to the biocrude, respectively 26–60% and 33–66%. Most of the inorganics (e.g. Ca, Mg, P) are recovered in the solids (above 70%), except for potassium and sodium, which show a higher degree of solubility in the aqueous phase.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 DenmarkPublisher:MDPI AG Funded by:EC | NextGenRoadFuelsEC| NextGenRoadFuelsAuthors: Ayaz Ali Shah; Saqib Sohail Toor; Asbjørn Haaning Nielsen; Thomas Helmer Pedersen; +1 AuthorsAyaz Ali Shah; Saqib Sohail Toor; Asbjørn Haaning Nielsen; Thomas Helmer Pedersen; Lasse Aistrup Rosendahl;doi: 10.3390/en14123488
The management and optimization of the aqueous phase are the major challenges that hinder the promotion of hydrothermal liquefaction (HTL) technology on a commercial scale. Recently, many studies reported about the accumulation of the N-content in the bio-crude with continuous recycling of the aqueous phase from high protein-containing biomass. In the present study, sewage sludge was processed at 350 °C in an autoclave. The produced aqueous phase was treated with activated carbon, and its subsequent recycling effect on the properties of the bio-crude and aqueous phase was investigated. By contacting the aqueous phase with activated carbon, 38–43% of the total nitrogen was removed from the aqueous phase. After applying the treated aqueous phase recycling, the energy recovery of the bio-crude increased from 50 to 61% after three rounds of recycling. From overall carbon/nitrogen recoveries, 50 to 56% of the carbon was transferred to the bio-crude phase and more than 50% of the nitrogen remained in the aqueous phase. The aqueous phase contained mostly of N&O-heterocyclic compounds, small chain organic acids, and amides. ICP-AES analysis showed that more than 80% of the inorganic elements were concentrated into the solid phase.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3488/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3488/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Royal Society of Chemistry (RSC) Funded by:EC | 4REFINERYEC| 4REFINERYAuthors: Tahir Hussain Seehar; Saqib Sohail Toor; Kamaldeep Sharma; Asbjørn Haaning Nielsen; +2 AuthorsTahir Hussain Seehar; Saqib Sohail Toor; Kamaldeep Sharma; Asbjørn Haaning Nielsen; Thomas Helmer Pedersen; Lasse Aistrup Rosendahl;doi: 10.1039/d0se01634a
In the present study, eucalyptus biomass was processed to produce biocrude via hydrothermal liquefaction.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se01634a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se01634a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2009 Netherlands, Netherlands, DenmarkPublisher:Informa UK Limited Jensen, H.S.; Nielsen, A.H.; Lens, P.N.L.; Hvitved-Jacobsen, Th.; Vollertsen, J.;pmid: 19950471
Corrosion of concrete sewer pipes caused by hydrogen sulphide is a problem in many sewer networks. The mechanisms of production and fate of hydrogen sulphide in the sewer biofilms and wastewater as well as its release to the sewer atmosphere are largely understood. In contrast, the mechanisms of the uptake of hydrogen sulphide on the concrete surfaces and subsequent concrete corrosion are basically unknown. To shed light on these mechanisms, the uptake of hydrogen sulphide from a sewer gas phase was compared to the biological hydrogen sulphide removal potential of the concrete corrosion products. The results showed that both microbial degradation at and sorption to the concrete surfaces were important for the uptake of hydrogen sulphide on the concrete surfaces.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09593330902894356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09593330902894356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 DenmarkPublisher:Wiley Authors: Vollertsen, J.; Hvitved-Jacobsen, T.; Nielsen, A. H.;Wastewater quality characteristics in terms of biomass, its substrates, and the corresponding kinetic and stoichiometric parameters were determined based on 109 wastewater samples originating from five different campaigns in four different sewer networks. Quality parameters were determined by model calibration of measured wastewater oxygen uptake rates applying a model that describes the aerobic breakdown of wastewater organic matter. Thereafter, the distributions of the parameters were analyzed. Two of the five datasets were obtained at the upstream end of a five‐km‐long, intercepting gravity sewer. For each of these upstream wastewater samples, downstream samples were collected with a delay corresponding to the residence time. The upstream distributions of the wastewater composition were used as boundary conditions for a Monte Carlo simulation. The calculated downstream distributions were compared to the measured downstream distributions and good agreement was observed.
Aalborg University R... arrow_drop_down Water Environment ResearchArticle . 2005 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/j.1554-7531.2005.tb00292.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Water Environment ResearchArticle . 2005 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/j.1554-7531.2005.tb00292.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Contribution for newspaper or weekly magazine , Journal , Other literature type 2006 DenmarkPublisher:Water Environment Federation Authors: Vollertsen, Jes; Nielsen, Asbjørn Haaning; Jensen, Henriette Stokbro; Hvitved-Jacobsen, Thorkild;pmid: 18330221
A conceptual model that simulates the formation and fate of odorous substances in branched collection systems is presented. The model predicts the activity of the relevant biomass phenotypes under aerobic, anoxic, and anaerobic conditions in force mains and gravity sewers. The formation and fate of individual, malodorous substances in the bulk water, biofilms, and sediments are modeled. The release of odorous compounds from the bulk water to the sewer gas phase, their fate in the gas phase, and their subsequent release into the urban atmosphere is simulated. Examples of model application include the prediction of hydrogen sulfide and malodorous fermentation products from force mains and gravity sewers.
Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2006Data sources: Aalborg University Research PortalWater Environment ResearchArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefProceedings of the Water Environment FederationArticle . 2006 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2175/193864706783749648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2006Data sources: Aalborg University Research PortalWater Environment ResearchArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefProceedings of the Water Environment FederationArticle . 2006 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2175/193864706783749648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:Elsevier BV Federica Conti; Saqib S. Toor; Thomas H. Pedersen; Asbjørn H. Nielsen; Lasse A. Rosendahl;Willows are increasingly used as natural filters to treat nutrient-rich wastewater. Their natural tendency to absorb minerals is exploited both for the nutrients and the metals, which are contained in the wastewater. This application allows addressing environmental concerns related to wastewater management and, at the same time, achieving higher biomass yields. However, the end-use of this biomass is often a simple incineration for production of heat and power. The present study proposes, alternatively, to use willow biomass, grown on wastewater irrigated fields, as feedstock for the hydrothermal liquefaction process. The thermochemical conversion route allows the valorization of the organic fraction of the biomass into a biocrude oil, and simultaneously collecting and preserving the inorganic elements in the effluent products. The willow was converted at supercritical water conditions (400 °C) for 15 min in a micro-batch reactor (10 cm 3), and high mass yields (39.7%) of energy dense (38.6 MJ kg −1) biocrude oil were obtained. It was found that most inorganics, including phosphorus (76% of total P on a mass basis), are mainly transferred to the solid products. The concentration of the elements in the solids eases their recovery and re-use for soil amendment. A different tendency was observed for potassium and sodium, which were almost exclusively collected in the aqueous phase (above 88% for both K and Na on a mass basis). Significant quantities of nitrogen and sulfur, and some metals, were transferred to the biocrude oil, however its quality resulted overall unaffected.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.07.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.07.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu