- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2007 Australia, United Kingdom, Spain, FrancePublisher:American Geophysical Union (AGU) Barrows, Timothy; Juggins, Steve; De Deckker, Patrick; Calvo, E; Pelejero, Carles;doi: 10.1029/2006pa001328
handle: 10261/26806 , 1885/30467
We compile and compare data for the last 150,000 years from four deep‐sea cores in the midlatitude zone of the Southern Hemisphere. We recalculate sea surface temperature estimates derived from foraminifera and compare these with estimates derived from alkenones and magnesium/calcium ratios in foraminiferal carbonate and with accompanying sedimentological and pollen records on a common absolute timescale. Using a stack of the highest‐resolution records, we find that first‐order climate change occurs in concert with changes in insolation in the Northern Hemisphere. Glacier extent and inferred vegetation changes in Australia and New Zealand vary in tandem with sea surface temperatures, signifying close links between oceanic and terrestrial temperature. In the Southern Ocean, rapid temperature change of the order of 6°C occurs within a few centuries and appears to have played an important role in midlatitude climate change. Sea surface temperature changes over longer periods closely match proxy temperature records from Antarctic ice cores. Warm events correlate with Antarctic events A1–A4 and appear to occur just before Dansgaard‐Oeschger events 8, 12, 14, and 17 in Greenland.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/30467Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2007 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPaleoceanographyArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2007Data sources: ArchiMer - Institutional Archive of IfremerNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006pa001328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 150 citations 150 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 39visibility views 39 download downloads 61 Powered bymore_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/30467Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2007 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPaleoceanographyArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2007Data sources: ArchiMer - Institutional Archive of IfremerNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006pa001328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Collection , Dataset , Other dataset type 2005Publisher:PANGAEA Kucera, Michal; Weinelt, Mara; Kiefer, Thorsten; Pflaumann, Uwe; Hayes, Angela; Weinelt, Martin; Chen, Min-Te; Mix, Alan C; Barrows, Timothy T; Cortijo, Elsa; Duprat, Josette M; Juggins, Stephen; Waelbroeck, Claire;We present a conceptual framework for a new approach to environmental calibration of planktonic foraminifer census counts. This approach is based on simultaneous application of a variety of transfer function techniques, which are trained on geographically constrained calibration data sets. It serves to minimise bias associated with the presence of cryptic species of planktonic foraminifera and provides an objective tool for assessing reliability of environmental estimates in fossil samples, allowing identification of adverse effects of no-analog faunas and technique-specific bias. We have compiled new calibration data sets for the North (N=862) and South (N=321) Atlantic and the Pacific Ocean (N=1111). We show evidence that these data sets offer adequate coverage of the Sea-Surface Temperature (SST) and faunal variation range and that they are not affected by the presence of pre-Holocene samples and/or calcite dissolution. We have applied four transfer function techniques, including Artificial Neural Networks, Revised Analog Method and SIMMAX (with and without distance weighting) on faunal counts in a Last Glacial Maximum (LGM) data set for the Atlantic Ocean (748 samples in 167 cores; based on the GLAMAP-2000 compilation) and a new data set for the Pacific Ocean (265 samples in 82 cores) and show that three of these techniques provide adequate degree of independence for the advantage of a multi-technique approach to be realised. The application of our new approach to the glacial Pacific lends support to the contraction and perhaps even a cooling of the Western Pacific Warm Pool and a substantial (>3 °C) cooling of the eastern equatorial Pacific and the eastern boundary currents. Our results do not provide conclusive evidence for LGM warming anywhere in the Pacific. The Atlantic reconstruction shows a number of robust patterns, including substantial cooling of eastern boundary currents with considerable advection of subpolar waters into the Benguela Current, a cooling of the equatorial Atlantic by ~5 °C, and steep SST gradients in the mid-latitude North Atlantic. The transfer function techniques generally agree that subtropical gyre areas in both hemispheres did not change significantly since the LGM, although the ANN technique produced glacial SST in the southern gyre 1-2 °C warmer than today. We have revisited the issue of sea-ice occurrence in the Nordic Seas and using the distribution of subpolar species of planktonic foraminifera in glacial samples, we conclude that the Norwegian Sea must have been ice-free during the summer. Supplement to: Kucera, Michal; Weinelt, Mara; Kiefer, Thorsten; Pflaumann, Uwe; Hayes, Angela; Weinelt, Martin; Chen, Min-Te; Mix, Alan C; Barrows, Timothy T; Cortijo, Elsa; Duprat, Josette M; Juggins, Stephen; Waelbroeck, Claire (2005): Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration datasets and its application to glacial Atlantic and Pacific Oceans. Quaternary Science Reviews, 24(7-9), 951-998
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2005License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.738563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2005License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.738563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 Italy, Australia, Switzerland, United Kingdom, ItalyPublisher:Elsevier BV Chondrogianni C; Arztegui D; Rolph T; Juggins S; Shemesh A; RiettiShati M; Niessen F; Guilizzoni P; Lami A; McKenzie JA; Oldfield F;handle: 20.500.14243/30459 , 1959.13/34532 , 1959.13/33963
Climate change during the late Pleistocene is dominated by periodicities on millennial time scales as documented by ice cores and sedimentary marine and terrestrial records of global distribution. Interannual to decadal variations have also been demonstrated in dust concentrations in Greenland ice cores but there is lack of comparable detail in sedimentary records. An 8.5 m long multiproxy record from Lake Albano (central Italy) spanning the time interval between B15.0 and 28.0 cal kyr BP reveals a high temporal resolution window into climate change during the Last Glacial Maximum (LGM). Distinct warm/cold cycles of millennial to centennial duration indicate a major response of the lake to climate-induced environmental changes. Flickering interannual to interdecadal variations within these cycles are interpreted to reflect oscillations of the North Atlantic (NAO) implying shifts in temperature, wind strength, source of moisture and atmospheric circulation pattern. r 2004 Elsevier Ltd and INQUA. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quaint.2004.01.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quaint.2004.01.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Spain, Netherlands, United KingdomPublisher:Wiley Curtis CJ; Juggins S; Clarke G; Battarbee RW; Kernan M; Catalan J; Thompson R; Posch M;handle: 10261/44347
Summary1. Mountain lake sediments are valuable archives of environmental change. However, the presence of multiple drivers of change over similar or overlapping timescales may obscure palaeolimnological signals obtained using traditional statistical analyses.2. As part of the European Union‐funded EMERGE programme, sediment cores were obtained from 209 mountain lakes across 11 lake districts spanning gradients of altitude, latitude, geochemistry and atmospheric deposition. Surface sediments (0–0.5 cm) were subsampled to represent modern conditions corresponding with chemical and environmental measurements, while core bottom (15–17 cm) sediments were subsampled to represent the pre‐industrial period.3. We used a novel approach to explore the relative importance of environmental drivers of change in diatom communities. First, we used canonical correspondence analysis (CCA) to identify the most significant variables explaining diatom community distributions in lake surface sediments. Lake water pH, nitrate concentration/dissolved organic carbon (DOC) and ice‐free period were identified as uniquely significant explanatory variables along three primary axes of variation. The modern data set was then used to construct transfer functions linking diatom communities to these key variables. We applied these transfer functions to core bottom samples to reconstruct change since the pre‐industrial period.4. Drivers of diatom community change differed among regions. Diatom‐inferred pH declined in five acid‐sensitive lake districts (Central & Southern Norway, Piedmont Ticino, Retezat Mountains, Scotland and Tatra Mountains), consistent with acidification caused by sulphur and nitrogen deposition. Diatom‐inferred pH increased in two lake districts [Julian Alps (JA), Pyrenees (PY)], probably due to eutrophication and climate warming‐induced increases in weathering rates respectively.5. Diatom inference models for nitrate and DOC were not independent. However, diatom‐inferred nitrate increased in all lake districts with detectable changes, except for the Retezat Mountains. These changes are consistent with increased nitrogen deposition and leaching in the industrial period and are independent of acidification effects, presumably reflecting a nitrogen fertilization effect. Diatom‐inferred DOC increased in the Central Alps and Scotland but decreased in Central Norway and Northern Finland, in contrast to increasing trends reported for Northern Europe and North America over the last 10–20 years. Conflicting drivers of change in DOC such as recovery from acidification and climate change further confound the interpretation of diatom‐inferred changes.6. Changes in the diatom‐inferred ice‐free period varied across regions. Warming is indicated in Central Norway, Scotland, Piedmont Ticino and the Pyrenees, while cooling is suggested in the more southern and eastern Julian Alps and Rila Mountains. Where detectable changes in diatom‐inferred pH and ice‐free period coincide there is generally an association between acidification and climate warming. Since warming is associated with increased weathering and alkalinity generation it is therefore possible that climate warming has reduced the impacts of acidification in acid‐sensitive lake districts.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFreshwater BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWeb-based Archive of RIVM PublicationsArticle . 2009Data sources: Web-based Archive of RIVM PublicationsNewcastle University Library ePrints ServiceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2427.2009.02317.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 36visibility views 36 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFreshwater BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWeb-based Archive of RIVM PublicationsArticle . 2009Data sources: Web-based Archive of RIVM PublicationsNewcastle University Library ePrints ServiceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2427.2009.02317.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 Australia, France, United KingdomPublisher:Elsevier BV Publicly fundedM. Weinelt; Alan C. Mix; Michal Kucera; Timothy T. Barrows; Thorsten Kiefer; Elsa Cortijo; Mara Weinelt; Claire Waelbroeck; Josette Duprat; Min-Te Chen; Steve Juggins; Uwe Pflaumann; Angela Hayes; Angela Hayes;handle: 1885/76649
Abstract We present a conceptual framework for a new approach to environmental calibration of planktonic foraminifer census counts. This approach is based on simultaneous application of a variety of transfer function techniques, which are trained on geographically constrained calibration data sets. It serves to minimise bias associated with the presence of cryptic species of planktonic foraminifera and provides an objective tool for assessing reliability of environmental estimates in fossil samples, allowing identification of adverse effects of no-analog faunas and technique-specific bias. We have compiled new calibration data sets for the North (N=862) and South (N=321) Atlantic and the Pacific Ocean (N=1111). We show evidence that these data sets offer adequate coverage of the Sea-Surface Temperature (SST) and faunal variation range and that they are not affected by the presence of pre-Holocene samples and/or calcite dissolution. We have applied four transfer function techniques, including Artificial Neural Networks, Revised Analog Method and SIMMAX (with and without distance weighting) on faunal counts in a Last Glacial Maximum (LGM) data set for the Atlantic Ocean (748 samples in 167 cores; based on the GLAMAP-2000 compilation) and a new data set for the Pacific Ocean (265 samples in 82 cores) and show that three of these techniques provide adequate degree of independence for the advantage of a multi-technique approach to be realised. The application of our new approach to the glacial Pacific lends support to the contraction and perhaps even a cooling of the Western Pacific Warm Pool and a substantial (>3 °C) cooling of the eastern equatorial Pacific and the eastern boundary currents. Our results do not provide conclusive evidence for LGM warming anywhere in the Pacific. The Atlantic reconstruction shows a number of robust patterns, including substantial cooling of eastern boundary currents with considerable advection of subpolar waters into the Benguela Current, a cooling of the equatorial Atlantic by ∼5 °C, and steep SST gradients in the mid-latitude North Atlantic. The transfer function techniques generally agree that subtropical gyre areas in both hemispheres did not change significantly since the LGM, although the ANN technique produced glacial SST in the southern gyre 1–2 °C warmer than today. We have revisited the issue of sea-ice occurrence in the Nordic Seas and using the distribution of subpolar species of planktonic foraminifera in glacial samples, we conclude that the Norwegian Sea must have been ice-free during the summer.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/76649Data sources: Bielefeld Academic Search Engine (BASE)Quaternary Science ReviewsArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2004.07.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 375 citations 375 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/76649Data sources: Bielefeld Academic Search Engine (BASE)Quaternary Science ReviewsArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2004.07.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003 Australia, United Kingdom, Italy, Italy, ItalyPublisher:Elsevier BV Oldfield F; Asioli A; Accorsi CA; Mercuri AM; Juggins S; Langone L; Rolph T; Trincardi F; Wolff G; Gibbs Z; Vigliotti L; Frignani M; van der Post K; Branch N;handle: 20.500.14243/76574 , 11380/612981 , 1959.13/33940
A multi-proxy study of a Holocene sediment core (RF 93-30) from the western flank of the central Adriatic, in 77m of water, reveals a sequence of changes in terrestrial vegetation, terrigenous sediment input and benthic fauna, as well as evidence for variations in sea surface temperature spanning the last 7000 years. The chronology of sedimentation is based on AMS 14C dates of foraminifera extracted from the core, palaeomagnetic secular variation, pollen indicators and dated tephra. The temporal resolution increases towards the surface and is sub-decadal for the last few centuries. This paper illustrates the potential value of high resolution near-shore marine sedimentary sequences for recording wide-scale human impact on marine sedimentation and fauna and, potentially, disentangling evidence for human activities from that for past changes in climate. The main changes recorded in vegetation, sedimentation and benthic foraminiferal assemblages appear to be directly related to human activity in the sediment source area, which includes the Po valley and the eastern flanks of the central and northern Apennines. The most striking episodes of deforestation and expanding human impact begin around 3600 BP (Late Bronze Age) and 700 BP (Medieval) and each leads to an acceleration in mass sedimentation and an increase in the proportion of terrigenous material, reflecting the response of surface processes to widespread forest clearance and cultivation. Although human impact appears to be the proximal cause of these changes, climatic effects may also have been important. During these periods, signs of stress are detectable in the benthic foram morphotype assemblages. Between these two periods of increased terrigeneous sedimentation there is smaller peak in sedimentation rate around 2400BP which is not associated with evidence for deforestation, shifts in the balance between terrigenous and authigenic sedimentation, or changes in benthic foraminifera. The mineral magnetic record provides a sensitive indicator of changing sediment sources: during forested periods of reduced terrigenous input it is dominated by authigenic bacterial magnetite, whereas during periods of increased erosion, anti-ferromagetic minerals (haematite and/or goethite) become more important, as well as both paramagnetic minerals and super-paramagnetic magnetite. Analysis of the alkenone, UK’37, record provides an indication of possible changes in sea surface temperature during the period, but it is premature to place too much reliance on these inferred changes until the indirect effects of past changes in the depth of the halocline and in circulation have been more fully evaluated.
Quaternary Science R... arrow_drop_down Quaternary Science ReviewsArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0277-3791(02)00088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu192 citations 192 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 144visibility views 144 Powered bymore_vert Quaternary Science R... arrow_drop_down Quaternary Science ReviewsArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0277-3791(02)00088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2007 Australia, United Kingdom, Spain, FrancePublisher:American Geophysical Union (AGU) Barrows, Timothy; Juggins, Steve; De Deckker, Patrick; Calvo, E; Pelejero, Carles;doi: 10.1029/2006pa001328
handle: 10261/26806 , 1885/30467
We compile and compare data for the last 150,000 years from four deep‐sea cores in the midlatitude zone of the Southern Hemisphere. We recalculate sea surface temperature estimates derived from foraminifera and compare these with estimates derived from alkenones and magnesium/calcium ratios in foraminiferal carbonate and with accompanying sedimentological and pollen records on a common absolute timescale. Using a stack of the highest‐resolution records, we find that first‐order climate change occurs in concert with changes in insolation in the Northern Hemisphere. Glacier extent and inferred vegetation changes in Australia and New Zealand vary in tandem with sea surface temperatures, signifying close links between oceanic and terrestrial temperature. In the Southern Ocean, rapid temperature change of the order of 6°C occurs within a few centuries and appears to have played an important role in midlatitude climate change. Sea surface temperature changes over longer periods closely match proxy temperature records from Antarctic ice cores. Warm events correlate with Antarctic events A1–A4 and appear to occur just before Dansgaard‐Oeschger events 8, 12, 14, and 17 in Greenland.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/30467Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2007 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPaleoceanographyArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2007Data sources: ArchiMer - Institutional Archive of IfremerNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006pa001328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 150 citations 150 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 39visibility views 39 download downloads 61 Powered bymore_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/30467Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2007 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPaleoceanographyArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2007Data sources: ArchiMer - Institutional Archive of IfremerNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006pa001328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Collection , Dataset , Other dataset type 2005Publisher:PANGAEA Kucera, Michal; Weinelt, Mara; Kiefer, Thorsten; Pflaumann, Uwe; Hayes, Angela; Weinelt, Martin; Chen, Min-Te; Mix, Alan C; Barrows, Timothy T; Cortijo, Elsa; Duprat, Josette M; Juggins, Stephen; Waelbroeck, Claire;We present a conceptual framework for a new approach to environmental calibration of planktonic foraminifer census counts. This approach is based on simultaneous application of a variety of transfer function techniques, which are trained on geographically constrained calibration data sets. It serves to minimise bias associated with the presence of cryptic species of planktonic foraminifera and provides an objective tool for assessing reliability of environmental estimates in fossil samples, allowing identification of adverse effects of no-analog faunas and technique-specific bias. We have compiled new calibration data sets for the North (N=862) and South (N=321) Atlantic and the Pacific Ocean (N=1111). We show evidence that these data sets offer adequate coverage of the Sea-Surface Temperature (SST) and faunal variation range and that they are not affected by the presence of pre-Holocene samples and/or calcite dissolution. We have applied four transfer function techniques, including Artificial Neural Networks, Revised Analog Method and SIMMAX (with and without distance weighting) on faunal counts in a Last Glacial Maximum (LGM) data set for the Atlantic Ocean (748 samples in 167 cores; based on the GLAMAP-2000 compilation) and a new data set for the Pacific Ocean (265 samples in 82 cores) and show that three of these techniques provide adequate degree of independence for the advantage of a multi-technique approach to be realised. The application of our new approach to the glacial Pacific lends support to the contraction and perhaps even a cooling of the Western Pacific Warm Pool and a substantial (>3 °C) cooling of the eastern equatorial Pacific and the eastern boundary currents. Our results do not provide conclusive evidence for LGM warming anywhere in the Pacific. The Atlantic reconstruction shows a number of robust patterns, including substantial cooling of eastern boundary currents with considerable advection of subpolar waters into the Benguela Current, a cooling of the equatorial Atlantic by ~5 °C, and steep SST gradients in the mid-latitude North Atlantic. The transfer function techniques generally agree that subtropical gyre areas in both hemispheres did not change significantly since the LGM, although the ANN technique produced glacial SST in the southern gyre 1-2 °C warmer than today. We have revisited the issue of sea-ice occurrence in the Nordic Seas and using the distribution of subpolar species of planktonic foraminifera in glacial samples, we conclude that the Norwegian Sea must have been ice-free during the summer. Supplement to: Kucera, Michal; Weinelt, Mara; Kiefer, Thorsten; Pflaumann, Uwe; Hayes, Angela; Weinelt, Martin; Chen, Min-Te; Mix, Alan C; Barrows, Timothy T; Cortijo, Elsa; Duprat, Josette M; Juggins, Stephen; Waelbroeck, Claire (2005): Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration datasets and its application to glacial Atlantic and Pacific Oceans. Quaternary Science Reviews, 24(7-9), 951-998
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2005License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.738563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2005License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.738563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 Italy, Australia, Switzerland, United Kingdom, ItalyPublisher:Elsevier BV Chondrogianni C; Arztegui D; Rolph T; Juggins S; Shemesh A; RiettiShati M; Niessen F; Guilizzoni P; Lami A; McKenzie JA; Oldfield F;handle: 20.500.14243/30459 , 1959.13/34532 , 1959.13/33963
Climate change during the late Pleistocene is dominated by periodicities on millennial time scales as documented by ice cores and sedimentary marine and terrestrial records of global distribution. Interannual to decadal variations have also been demonstrated in dust concentrations in Greenland ice cores but there is lack of comparable detail in sedimentary records. An 8.5 m long multiproxy record from Lake Albano (central Italy) spanning the time interval between B15.0 and 28.0 cal kyr BP reveals a high temporal resolution window into climate change during the Last Glacial Maximum (LGM). Distinct warm/cold cycles of millennial to centennial duration indicate a major response of the lake to climate-induced environmental changes. Flickering interannual to interdecadal variations within these cycles are interpreted to reflect oscillations of the North Atlantic (NAO) implying shifts in temperature, wind strength, source of moisture and atmospheric circulation pattern. r 2004 Elsevier Ltd and INQUA. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quaint.2004.01.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quaint.2004.01.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Spain, Netherlands, United KingdomPublisher:Wiley Curtis CJ; Juggins S; Clarke G; Battarbee RW; Kernan M; Catalan J; Thompson R; Posch M;handle: 10261/44347
Summary1. Mountain lake sediments are valuable archives of environmental change. However, the presence of multiple drivers of change over similar or overlapping timescales may obscure palaeolimnological signals obtained using traditional statistical analyses.2. As part of the European Union‐funded EMERGE programme, sediment cores were obtained from 209 mountain lakes across 11 lake districts spanning gradients of altitude, latitude, geochemistry and atmospheric deposition. Surface sediments (0–0.5 cm) were subsampled to represent modern conditions corresponding with chemical and environmental measurements, while core bottom (15–17 cm) sediments were subsampled to represent the pre‐industrial period.3. We used a novel approach to explore the relative importance of environmental drivers of change in diatom communities. First, we used canonical correspondence analysis (CCA) to identify the most significant variables explaining diatom community distributions in lake surface sediments. Lake water pH, nitrate concentration/dissolved organic carbon (DOC) and ice‐free period were identified as uniquely significant explanatory variables along three primary axes of variation. The modern data set was then used to construct transfer functions linking diatom communities to these key variables. We applied these transfer functions to core bottom samples to reconstruct change since the pre‐industrial period.4. Drivers of diatom community change differed among regions. Diatom‐inferred pH declined in five acid‐sensitive lake districts (Central & Southern Norway, Piedmont Ticino, Retezat Mountains, Scotland and Tatra Mountains), consistent with acidification caused by sulphur and nitrogen deposition. Diatom‐inferred pH increased in two lake districts [Julian Alps (JA), Pyrenees (PY)], probably due to eutrophication and climate warming‐induced increases in weathering rates respectively.5. Diatom inference models for nitrate and DOC were not independent. However, diatom‐inferred nitrate increased in all lake districts with detectable changes, except for the Retezat Mountains. These changes are consistent with increased nitrogen deposition and leaching in the industrial period and are independent of acidification effects, presumably reflecting a nitrogen fertilization effect. Diatom‐inferred DOC increased in the Central Alps and Scotland but decreased in Central Norway and Northern Finland, in contrast to increasing trends reported for Northern Europe and North America over the last 10–20 years. Conflicting drivers of change in DOC such as recovery from acidification and climate change further confound the interpretation of diatom‐inferred changes.6. Changes in the diatom‐inferred ice‐free period varied across regions. Warming is indicated in Central Norway, Scotland, Piedmont Ticino and the Pyrenees, while cooling is suggested in the more southern and eastern Julian Alps and Rila Mountains. Where detectable changes in diatom‐inferred pH and ice‐free period coincide there is generally an association between acidification and climate warming. Since warming is associated with increased weathering and alkalinity generation it is therefore possible that climate warming has reduced the impacts of acidification in acid‐sensitive lake districts.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFreshwater BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWeb-based Archive of RIVM PublicationsArticle . 2009Data sources: Web-based Archive of RIVM PublicationsNewcastle University Library ePrints ServiceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2427.2009.02317.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 36visibility views 36 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFreshwater BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWeb-based Archive of RIVM PublicationsArticle . 2009Data sources: Web-based Archive of RIVM PublicationsNewcastle University Library ePrints ServiceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2427.2009.02317.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 Australia, France, United KingdomPublisher:Elsevier BV Publicly fundedM. Weinelt; Alan C. Mix; Michal Kucera; Timothy T. Barrows; Thorsten Kiefer; Elsa Cortijo; Mara Weinelt; Claire Waelbroeck; Josette Duprat; Min-Te Chen; Steve Juggins; Uwe Pflaumann; Angela Hayes; Angela Hayes;handle: 1885/76649
Abstract We present a conceptual framework for a new approach to environmental calibration of planktonic foraminifer census counts. This approach is based on simultaneous application of a variety of transfer function techniques, which are trained on geographically constrained calibration data sets. It serves to minimise bias associated with the presence of cryptic species of planktonic foraminifera and provides an objective tool for assessing reliability of environmental estimates in fossil samples, allowing identification of adverse effects of no-analog faunas and technique-specific bias. We have compiled new calibration data sets for the North (N=862) and South (N=321) Atlantic and the Pacific Ocean (N=1111). We show evidence that these data sets offer adequate coverage of the Sea-Surface Temperature (SST) and faunal variation range and that they are not affected by the presence of pre-Holocene samples and/or calcite dissolution. We have applied four transfer function techniques, including Artificial Neural Networks, Revised Analog Method and SIMMAX (with and without distance weighting) on faunal counts in a Last Glacial Maximum (LGM) data set for the Atlantic Ocean (748 samples in 167 cores; based on the GLAMAP-2000 compilation) and a new data set for the Pacific Ocean (265 samples in 82 cores) and show that three of these techniques provide adequate degree of independence for the advantage of a multi-technique approach to be realised. The application of our new approach to the glacial Pacific lends support to the contraction and perhaps even a cooling of the Western Pacific Warm Pool and a substantial (>3 °C) cooling of the eastern equatorial Pacific and the eastern boundary currents. Our results do not provide conclusive evidence for LGM warming anywhere in the Pacific. The Atlantic reconstruction shows a number of robust patterns, including substantial cooling of eastern boundary currents with considerable advection of subpolar waters into the Benguela Current, a cooling of the equatorial Atlantic by ∼5 °C, and steep SST gradients in the mid-latitude North Atlantic. The transfer function techniques generally agree that subtropical gyre areas in both hemispheres did not change significantly since the LGM, although the ANN technique produced glacial SST in the southern gyre 1–2 °C warmer than today. We have revisited the issue of sea-ice occurrence in the Nordic Seas and using the distribution of subpolar species of planktonic foraminifera in glacial samples, we conclude that the Norwegian Sea must have been ice-free during the summer.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/76649Data sources: Bielefeld Academic Search Engine (BASE)Quaternary Science ReviewsArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2004.07.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 375 citations 375 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/76649Data sources: Bielefeld Academic Search Engine (BASE)Quaternary Science ReviewsArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2004.07.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003 Australia, United Kingdom, Italy, Italy, ItalyPublisher:Elsevier BV Oldfield F; Asioli A; Accorsi CA; Mercuri AM; Juggins S; Langone L; Rolph T; Trincardi F; Wolff G; Gibbs Z; Vigliotti L; Frignani M; van der Post K; Branch N;handle: 20.500.14243/76574 , 11380/612981 , 1959.13/33940
A multi-proxy study of a Holocene sediment core (RF 93-30) from the western flank of the central Adriatic, in 77m of water, reveals a sequence of changes in terrestrial vegetation, terrigenous sediment input and benthic fauna, as well as evidence for variations in sea surface temperature spanning the last 7000 years. The chronology of sedimentation is based on AMS 14C dates of foraminifera extracted from the core, palaeomagnetic secular variation, pollen indicators and dated tephra. The temporal resolution increases towards the surface and is sub-decadal for the last few centuries. This paper illustrates the potential value of high resolution near-shore marine sedimentary sequences for recording wide-scale human impact on marine sedimentation and fauna and, potentially, disentangling evidence for human activities from that for past changes in climate. The main changes recorded in vegetation, sedimentation and benthic foraminiferal assemblages appear to be directly related to human activity in the sediment source area, which includes the Po valley and the eastern flanks of the central and northern Apennines. The most striking episodes of deforestation and expanding human impact begin around 3600 BP (Late Bronze Age) and 700 BP (Medieval) and each leads to an acceleration in mass sedimentation and an increase in the proportion of terrigenous material, reflecting the response of surface processes to widespread forest clearance and cultivation. Although human impact appears to be the proximal cause of these changes, climatic effects may also have been important. During these periods, signs of stress are detectable in the benthic foram morphotype assemblages. Between these two periods of increased terrigeneous sedimentation there is smaller peak in sedimentation rate around 2400BP which is not associated with evidence for deforestation, shifts in the balance between terrigenous and authigenic sedimentation, or changes in benthic foraminifera. The mineral magnetic record provides a sensitive indicator of changing sediment sources: during forested periods of reduced terrigenous input it is dominated by authigenic bacterial magnetite, whereas during periods of increased erosion, anti-ferromagetic minerals (haematite and/or goethite) become more important, as well as both paramagnetic minerals and super-paramagnetic magnetite. Analysis of the alkenone, UK’37, record provides an indication of possible changes in sea surface temperature during the period, but it is premature to place too much reliance on these inferred changes until the indirect effects of past changes in the depth of the halocline and in circulation have been more fully evaluated.
Quaternary Science R... arrow_drop_down Quaternary Science ReviewsArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0277-3791(02)00088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu192 citations 192 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 144visibility views 144 Powered bymore_vert Quaternary Science R... arrow_drop_down Quaternary Science ReviewsArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0277-3791(02)00088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu