- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Conference object , Article 2018Publisher:IEEE Authors: He Hao; Karanjit Kalsi; Tao Fu; Di Wu;Flexibility from building loads can be used for integrating renewable energy and providing different grid services. It is challenging to quantify and compare the flexibility from different classes of building loads due to their diversified characteristics and dynamics. Methodology has been proposed to model building loads as a virtual battery (VB), which is simple and general, yet able to capture physical characteristics of building loads, environmental parameters, human behavior, and other factors. This paper presents a regional assessment of VB technical potential and economic benefits from residential loads and commercial buildings. Housing, population, weather station, and climate zone information have been collected and used to estimate VB technical potential. Energy and ancillary service prices are then used for economic benefits assessment and analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tdc.2018.8440225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tdc.2018.8440225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Di Wu; Xu Ma; Tao Fu; Zhangshuan Hou; P. J. Rehm; Ning Lu;This paper presents a novel dispatch and evaluation framework for battery energy storage systems (BESSs) to minimize a load servicing entity's coincident demand during system peak hours. The framework consists of i) a two-step BESS dispatch process that accounts for uncertainties in forecasting system peak and using limited battery cycle life, and ii) procedures to design control parameters, determine BESS duration, and estimate the corresponding net benefits. In the proposed dispatch, a rule-based triggering mechanism is executed to determine whether to dispatch a BESS on an operating day by comparing the peak-day probability with a predetermined threshold. Once the dispatch is triggered, a model predictive control is carried out to maximize the expected reduction in peak demand. By exercising this two-step dispatch method with different thresholds, one can explore the trade-off between peak demand reduction effectiveness and loss of battery life, and thereby identify the optimal thresholds to maximize cumulative economic benefits. Case studies are conducted using the data provided by utilities in North Carolina. Simulation results are presented to demonstrate the effectiveness of the proposed method. This paper presents a novel dispatch and evaluation framework for battery energy storage systems to minimize a load servicing entity's coincident demand during system peak hours.
IEEE Open Access Jou... arrow_drop_down IEEE Open Access Journal of Power and EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/oajpe.2022.3196690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Open Access Jou... arrow_drop_down IEEE Open Access Journal of Power and EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/oajpe.2022.3196690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Switzerland, BrazilPublisher:Frontiers Media SA Luiz G. M. Silva; Luiz G. M. Silva; Nathan Ning; Craig A. Boys; Craig A. Boys; Tao Fu; Eduardo Meneguzzi Brambilla; Jan A. du Preez; Z. Daniel Deng; Wayne Robinson; Katherine E. Doyle; Lee J. Baumgartner;handle: 11449/208922
Pumped hydroelectric energy storage (PHES) projects are being considered worldwide to achieve renewable energy targets and to stabilize baseload energy supply from intermittent renewable energy sources. Unlike conventional hydroelectric systems that only pass water downstream, a feature of PHES schemes is that they rely on bi-directional water flow. In some cases, this flow can be across different waterbodies or catchments, posing a risk of inadvertently expanding the range of aquatic biota such as fish. The risk of this happening depends on the likelihood of survival of individuals, which remains poorly understood for turbines that are pumping rather than generating. This study quantified the survival of a globally widespread and invasive poeciliid fish, Eastern gambusia (Gambusia holbrooki), when exposed to three hydraulic stresses characteristic of those experienced through a PHES during the pumping phase. A shear flume and hyperbaric chamber were used to expose fish to different strain rates and rapid and sustained pressurization, respectively. Blade strike models were also used to predict fish survival through a Francis dual turbine/pump. Simulated ranges were based on design and operational conditions provided for a PHES scheme proposed in south-eastern Australia. All gambusia tested survived high levels of shear stress (up to 1,853 s−1), extremely high pressurization (up to 7,600 kPa gauge pressure) and the majority (>93%) were unlikely to be struck by a turbine blade. Given their tolerance to these extreme simulated stresses, we conclude that gambusia will likely survive passage through the simulated PHES scheme if they are entrained at the intake. Therefore, where a new PHES project poses the risk of inadvertently expanding the range of gambusia or similar poeciliid species, measures to minimize their spread or mitigate their ecosystem impacts should be considered. Frontiers in Environmental Science, 8 ISSN:2296-665X
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2020.563654&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2020.563654&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021Publisher:Power System Technology Press Authors: Tao Fu; Dexin Wang; Xiaoyuan Fan; Qiuhua Huang;For critical infrastructure restoration planning, the real-time scheduling and coordination of system restoration efforts, the key in decision-making is to prioritize those critical components that are out of service during the restoration. For this purpose, there is a need for component importance analysis. While it has been investigated extensively for individual systems, component importance considering interdependence among transmission, distribution and communication (T&D&C) systems has not been systematically analyzed and widely adopted. In this study, we propose a component importance assessment method in the context of interdependence between T&D&C networks. Analytic methods for multilayer networks and a set of metrics have been applied for assessing the component importance and interdependence between T&D&C networks based on their physical characteristics. The proposed methodology is further validated with integrated synthetic Illinois regional transmission, distribution, and communication (T&D&C) systems, the results reveal the unique characteristics of component/node importance, which may be strongly affected by the network topology and cross-domain node mapping. 11 pages
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17775/cseejpes.2020.05520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17775/cseejpes.2020.05520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011 United StatesPublisher:MDPI AG Weiland, M A; Deng, Z D; Seim, T A; LaMarche, B L; Choi, E Y; Fu, T; Carlson, T J; Thronas, A I; Eppard, M B;In 2001 the U.S. Army Corps of Engineers, Portland District (OR, USA), started developing the Juvenile Salmon Acoustic Telemetry System, a nonproprietary sensing technology, to meet the needs for monitoring the survival of juvenile salmonids through eight large hydroelectric facilities within the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006, the Pacific Northwest National Laboratory began the development of an acoustic receiver system for deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in two or three dimensions for determining route of passage and behavior as the fish passed at the facility. The additional information on route of passage, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities through the FCRPS.
Sensors arrow_drop_down SensorsOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1424-8220/11/6/5645/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s110605645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1424-8220/11/6/5645/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s110605645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2018Publisher:IEEE Authors: Sen Huang; Tao Fu; Jim Follum; Yannan Sun;Commercial buildings account for a significant portion of electrical energy demand in the United States. Thus, they serve as an ideal target for energy efficiency improvements, which can reduce congestion on the electrical grid and result in lower payments for building owners. One of the proposed approaches to improving energy efficiency in commercial buildings is transactive control, which allows system components to negotiate for resources within a market. The market is designed so that the control objective is met when components consume their allocation of energy. In this paper, a method is proposed to verify that the consumption of market participants matches their allocation. The method regards energy allocations at the beginning of market periods as predictions. Using collected measurements, actual consumption is then estimated at the end of the market period. Agreement between the predicted and estimated use indicates that the system component is behaving as expected. Initial results from the deployment of this verification method in a commercial building are reported, demonstrating the practicality and utility of the method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm.2018.8585861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm.2018.8585861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Jun Lu; Gary E. Johnson; Richard L. Townsend; Li Tan; Hongfei Hou; John R. Skalski; Tao Fu; Zhiqun Daniel Deng; Joanne P. Duncan; Jayson J. Martinez;doi: 10.3390/en11040990
Approximately 16% of the world’s electricity and over 80% of the world’s renewable electricity is generated from hydropower resources, and there is potential for developing significantly more new hydropower capacity. In practice, however, optimizing the use of potential hydropower resources is limited by various factors, including environmental effects and related mitigation requirements. That is why hydropower regulatory requirements frequently call for targets to be met regarding fish injury and mortality rates. The sensor fish (SF) is a small autonomous sensor package that can be deployed through complex hydraulic structures, such as a turbine or spillway, to collect high resolution measurements that describe the forces and motions that live fish would encounter. The Hydropower Biological Evaluation Toolset (HBET), an integrated suite of science-based tools, is designed to use the SF (implemented) and other tools (to be implemented in the future) to characterize the hydraulic conditions of hydropower structures and provide quantitative estimates of fish injury and mortality rates resulting from exposure to various physical stressors including strike, pressure, and shear. HBET enables users to design new studies, analyze data, perform statistical analyses, and evaluate biological responses. It can be used by researchers, turbine designers, hydropower operators, and regulators to design and operate hydropower systems that minimize ecological impacts in a cost-effective manner. In this paper, we discuss the technical methodologies and algorithms implemented in HBET and describe a case study that illustrates its functionalities.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/990/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/990/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:IOP Publishing Authors: Nathalie Voisin; Nathalie Voisin; Tian Zhou; Tao Fu;In the western United States, 27% of electricity demand is met by hydropower, so power system planners have a key interest in predicting hydropower availability under changing climate conditions. Large-scale projections of hydropower generation are often simplified based on regression relationships with runoff and they are not always ready to inform power system models due to the coarse time scale (annual) or limited number of represented power plants. We developed an enhanced process-based hydropower model to predict future hydropower generation by addressing the commonly under-represented constraints, including (1) the ecological spills, (2) penstock constraints to provide flexibility in electricity operations, and (3) biases in hydro-meteorological simulations. We evaluated the model over the western United States under two emission scenarios (RCP4.5 and RCP8.5) and ten downscaled global circulation models. At the annual time scale, potential hydropower generation is not projected to change substantially, except in California. At the seasonal time scale, systematic shifting of the generation patterns can be observed in snowmelt-dominated regions. These projected annual and regional trends are comparable to other regression-based relationships. However, the representation of more complex operations and constraints tend to reduce the uncertainties inherent to climate projections at seasonal scale. In the Pacific Northwest region where hydropower is the dominant electricity source, our predicted future change of hydropower generation is about 10% less than the regression-based projections in spring and summer. The model can also capture the seasonal non-stationary in hydrologic changes. The spatio and temporal scales of the model, increased accuracy and quantification of uncertainty allow one to use the products to inform power system models toward supporting energy sector planning activities and water-energy trade-offs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad19f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad19f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Zhiqun Daniel Deng; Joanne P. Duncan; Thomas J. Carlson; Tao Fu; Gary E. Johnson; D. Zhou; Hongfei Hou;AbstractFish can be injured or killed during turbine passage. This paper reports the first in-situ evaluation of hydraulic conditions that fish experienced during passage through Francis turbines using an autonomous sensor device at Arrowrock, Cougar, and Detroit Dams. Among different turbine passage regions, most of the severe events occurred in the stay vane/wicket gate and the runner regions. In the stay vane/wicket gate region, almost all severe events were collisions. In the runner region, both severe collisions and severe shear events occurred. At Cougar Dam, at least 50% fewer releases experienced severe collisions in the runner region operating at peak efficiency than at the minimum and maximum opening, indicating the wicket gate opening could affect hydraulic conditions in the runner region. A higher percentage of releases experienced severe events in the runner region when passing through the Francis turbines than through an advanced hydropower Kaplan turbine (AHT) at Wanapum Dam. The nadir pressures of the three Francis turbines were more than 50% lower than those of the AHT. The three Francis turbines had much higher magnitudes and rates of pressure change than the AHT. This study provides critical information on hydraulic conditions and fish passage information of Francis turbines, which can help guide future laboratory studies of fish passing through Francis turbine, design fish-friendly turbines, and optimize the operation of existing turbines for better fish passage conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.08.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.08.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2022Publisher:Frontiers Media SA Tao Fu; Huifen Zhou; Xu Ma; Z. Jason Hou; Di Wu;Battery energy storage systems can be used for peak demand reduction in power systems, leading to significant economic benefits. Two practical challenges are 1) accurately determining the peak load days and hours and 2) quantifying and reducing uncertainties associated with the forecast in probabilistic risk measures for dispatch decision-making. In this study, we develop a supervised machine learning approach to generate 1) the probability of the next operation day containing the peak hour of the month and 2) the probability of an hour to be the peak hour of the day. Guidance is provided on preparation and augmentation of data as well as selection of machine learning models and decision-making thresholds. The proposed approach is applied to the Duke Energy Progress system and successfully captures 69 peak days out of 72 testing months with a 3% exceedance probability threshold. On 90% of the peak days, the actual peak hour is among the 2 h with the highest probabilities.
Frontiers in Energy ... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.944804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Energy ... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.944804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object , Article 2018Publisher:IEEE Authors: He Hao; Karanjit Kalsi; Tao Fu; Di Wu;Flexibility from building loads can be used for integrating renewable energy and providing different grid services. It is challenging to quantify and compare the flexibility from different classes of building loads due to their diversified characteristics and dynamics. Methodology has been proposed to model building loads as a virtual battery (VB), which is simple and general, yet able to capture physical characteristics of building loads, environmental parameters, human behavior, and other factors. This paper presents a regional assessment of VB technical potential and economic benefits from residential loads and commercial buildings. Housing, population, weather station, and climate zone information have been collected and used to estimate VB technical potential. Energy and ancillary service prices are then used for economic benefits assessment and analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tdc.2018.8440225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tdc.2018.8440225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Di Wu; Xu Ma; Tao Fu; Zhangshuan Hou; P. J. Rehm; Ning Lu;This paper presents a novel dispatch and evaluation framework for battery energy storage systems (BESSs) to minimize a load servicing entity's coincident demand during system peak hours. The framework consists of i) a two-step BESS dispatch process that accounts for uncertainties in forecasting system peak and using limited battery cycle life, and ii) procedures to design control parameters, determine BESS duration, and estimate the corresponding net benefits. In the proposed dispatch, a rule-based triggering mechanism is executed to determine whether to dispatch a BESS on an operating day by comparing the peak-day probability with a predetermined threshold. Once the dispatch is triggered, a model predictive control is carried out to maximize the expected reduction in peak demand. By exercising this two-step dispatch method with different thresholds, one can explore the trade-off between peak demand reduction effectiveness and loss of battery life, and thereby identify the optimal thresholds to maximize cumulative economic benefits. Case studies are conducted using the data provided by utilities in North Carolina. Simulation results are presented to demonstrate the effectiveness of the proposed method. This paper presents a novel dispatch and evaluation framework for battery energy storage systems to minimize a load servicing entity's coincident demand during system peak hours.
IEEE Open Access Jou... arrow_drop_down IEEE Open Access Journal of Power and EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/oajpe.2022.3196690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Open Access Jou... arrow_drop_down IEEE Open Access Journal of Power and EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/oajpe.2022.3196690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Switzerland, BrazilPublisher:Frontiers Media SA Luiz G. M. Silva; Luiz G. M. Silva; Nathan Ning; Craig A. Boys; Craig A. Boys; Tao Fu; Eduardo Meneguzzi Brambilla; Jan A. du Preez; Z. Daniel Deng; Wayne Robinson; Katherine E. Doyle; Lee J. Baumgartner;handle: 11449/208922
Pumped hydroelectric energy storage (PHES) projects are being considered worldwide to achieve renewable energy targets and to stabilize baseload energy supply from intermittent renewable energy sources. Unlike conventional hydroelectric systems that only pass water downstream, a feature of PHES schemes is that they rely on bi-directional water flow. In some cases, this flow can be across different waterbodies or catchments, posing a risk of inadvertently expanding the range of aquatic biota such as fish. The risk of this happening depends on the likelihood of survival of individuals, which remains poorly understood for turbines that are pumping rather than generating. This study quantified the survival of a globally widespread and invasive poeciliid fish, Eastern gambusia (Gambusia holbrooki), when exposed to three hydraulic stresses characteristic of those experienced through a PHES during the pumping phase. A shear flume and hyperbaric chamber were used to expose fish to different strain rates and rapid and sustained pressurization, respectively. Blade strike models were also used to predict fish survival through a Francis dual turbine/pump. Simulated ranges were based on design and operational conditions provided for a PHES scheme proposed in south-eastern Australia. All gambusia tested survived high levels of shear stress (up to 1,853 s−1), extremely high pressurization (up to 7,600 kPa gauge pressure) and the majority (>93%) were unlikely to be struck by a turbine blade. Given their tolerance to these extreme simulated stresses, we conclude that gambusia will likely survive passage through the simulated PHES scheme if they are entrained at the intake. Therefore, where a new PHES project poses the risk of inadvertently expanding the range of gambusia or similar poeciliid species, measures to minimize their spread or mitigate their ecosystem impacts should be considered. Frontiers in Environmental Science, 8 ISSN:2296-665X
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2020.563654&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2020.563654&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021Publisher:Power System Technology Press Authors: Tao Fu; Dexin Wang; Xiaoyuan Fan; Qiuhua Huang;For critical infrastructure restoration planning, the real-time scheduling and coordination of system restoration efforts, the key in decision-making is to prioritize those critical components that are out of service during the restoration. For this purpose, there is a need for component importance analysis. While it has been investigated extensively for individual systems, component importance considering interdependence among transmission, distribution and communication (T&D&C) systems has not been systematically analyzed and widely adopted. In this study, we propose a component importance assessment method in the context of interdependence between T&D&C networks. Analytic methods for multilayer networks and a set of metrics have been applied for assessing the component importance and interdependence between T&D&C networks based on their physical characteristics. The proposed methodology is further validated with integrated synthetic Illinois regional transmission, distribution, and communication (T&D&C) systems, the results reveal the unique characteristics of component/node importance, which may be strongly affected by the network topology and cross-domain node mapping. 11 pages
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17775/cseejpes.2020.05520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17775/cseejpes.2020.05520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011 United StatesPublisher:MDPI AG Weiland, M A; Deng, Z D; Seim, T A; LaMarche, B L; Choi, E Y; Fu, T; Carlson, T J; Thronas, A I; Eppard, M B;In 2001 the U.S. Army Corps of Engineers, Portland District (OR, USA), started developing the Juvenile Salmon Acoustic Telemetry System, a nonproprietary sensing technology, to meet the needs for monitoring the survival of juvenile salmonids through eight large hydroelectric facilities within the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006, the Pacific Northwest National Laboratory began the development of an acoustic receiver system for deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in two or three dimensions for determining route of passage and behavior as the fish passed at the facility. The additional information on route of passage, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities through the FCRPS.
Sensors arrow_drop_down SensorsOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1424-8220/11/6/5645/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s110605645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1424-8220/11/6/5645/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s110605645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2018Publisher:IEEE Authors: Sen Huang; Tao Fu; Jim Follum; Yannan Sun;Commercial buildings account for a significant portion of electrical energy demand in the United States. Thus, they serve as an ideal target for energy efficiency improvements, which can reduce congestion on the electrical grid and result in lower payments for building owners. One of the proposed approaches to improving energy efficiency in commercial buildings is transactive control, which allows system components to negotiate for resources within a market. The market is designed so that the control objective is met when components consume their allocation of energy. In this paper, a method is proposed to verify that the consumption of market participants matches their allocation. The method regards energy allocations at the beginning of market periods as predictions. Using collected measurements, actual consumption is then estimated at the end of the market period. Agreement between the predicted and estimated use indicates that the system component is behaving as expected. Initial results from the deployment of this verification method in a commercial building are reported, demonstrating the practicality and utility of the method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm.2018.8585861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm.2018.8585861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Jun Lu; Gary E. Johnson; Richard L. Townsend; Li Tan; Hongfei Hou; John R. Skalski; Tao Fu; Zhiqun Daniel Deng; Joanne P. Duncan; Jayson J. Martinez;doi: 10.3390/en11040990
Approximately 16% of the world’s electricity and over 80% of the world’s renewable electricity is generated from hydropower resources, and there is potential for developing significantly more new hydropower capacity. In practice, however, optimizing the use of potential hydropower resources is limited by various factors, including environmental effects and related mitigation requirements. That is why hydropower regulatory requirements frequently call for targets to be met regarding fish injury and mortality rates. The sensor fish (SF) is a small autonomous sensor package that can be deployed through complex hydraulic structures, such as a turbine or spillway, to collect high resolution measurements that describe the forces and motions that live fish would encounter. The Hydropower Biological Evaluation Toolset (HBET), an integrated suite of science-based tools, is designed to use the SF (implemented) and other tools (to be implemented in the future) to characterize the hydraulic conditions of hydropower structures and provide quantitative estimates of fish injury and mortality rates resulting from exposure to various physical stressors including strike, pressure, and shear. HBET enables users to design new studies, analyze data, perform statistical analyses, and evaluate biological responses. It can be used by researchers, turbine designers, hydropower operators, and regulators to design and operate hydropower systems that minimize ecological impacts in a cost-effective manner. In this paper, we discuss the technical methodologies and algorithms implemented in HBET and describe a case study that illustrates its functionalities.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/990/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/990/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:IOP Publishing Authors: Nathalie Voisin; Nathalie Voisin; Tian Zhou; Tao Fu;In the western United States, 27% of electricity demand is met by hydropower, so power system planners have a key interest in predicting hydropower availability under changing climate conditions. Large-scale projections of hydropower generation are often simplified based on regression relationships with runoff and they are not always ready to inform power system models due to the coarse time scale (annual) or limited number of represented power plants. We developed an enhanced process-based hydropower model to predict future hydropower generation by addressing the commonly under-represented constraints, including (1) the ecological spills, (2) penstock constraints to provide flexibility in electricity operations, and (3) biases in hydro-meteorological simulations. We evaluated the model over the western United States under two emission scenarios (RCP4.5 and RCP8.5) and ten downscaled global circulation models. At the annual time scale, potential hydropower generation is not projected to change substantially, except in California. At the seasonal time scale, systematic shifting of the generation patterns can be observed in snowmelt-dominated regions. These projected annual and regional trends are comparable to other regression-based relationships. However, the representation of more complex operations and constraints tend to reduce the uncertainties inherent to climate projections at seasonal scale. In the Pacific Northwest region where hydropower is the dominant electricity source, our predicted future change of hydropower generation is about 10% less than the regression-based projections in spring and summer. The model can also capture the seasonal non-stationary in hydrologic changes. The spatio and temporal scales of the model, increased accuracy and quantification of uncertainty allow one to use the products to inform power system models toward supporting energy sector planning activities and water-energy trade-offs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad19f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad19f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Zhiqun Daniel Deng; Joanne P. Duncan; Thomas J. Carlson; Tao Fu; Gary E. Johnson; D. Zhou; Hongfei Hou;AbstractFish can be injured or killed during turbine passage. This paper reports the first in-situ evaluation of hydraulic conditions that fish experienced during passage through Francis turbines using an autonomous sensor device at Arrowrock, Cougar, and Detroit Dams. Among different turbine passage regions, most of the severe events occurred in the stay vane/wicket gate and the runner regions. In the stay vane/wicket gate region, almost all severe events were collisions. In the runner region, both severe collisions and severe shear events occurred. At Cougar Dam, at least 50% fewer releases experienced severe collisions in the runner region operating at peak efficiency than at the minimum and maximum opening, indicating the wicket gate opening could affect hydraulic conditions in the runner region. A higher percentage of releases experienced severe events in the runner region when passing through the Francis turbines than through an advanced hydropower Kaplan turbine (AHT) at Wanapum Dam. The nadir pressures of the three Francis turbines were more than 50% lower than those of the AHT. The three Francis turbines had much higher magnitudes and rates of pressure change than the AHT. This study provides critical information on hydraulic conditions and fish passage information of Francis turbines, which can help guide future laboratory studies of fish passing through Francis turbine, design fish-friendly turbines, and optimize the operation of existing turbines for better fish passage conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.08.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.08.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2022Publisher:Frontiers Media SA Tao Fu; Huifen Zhou; Xu Ma; Z. Jason Hou; Di Wu;Battery energy storage systems can be used for peak demand reduction in power systems, leading to significant economic benefits. Two practical challenges are 1) accurately determining the peak load days and hours and 2) quantifying and reducing uncertainties associated with the forecast in probabilistic risk measures for dispatch decision-making. In this study, we develop a supervised machine learning approach to generate 1) the probability of the next operation day containing the peak hour of the month and 2) the probability of an hour to be the peak hour of the day. Guidance is provided on preparation and augmentation of data as well as selection of machine learning models and decision-making thresholds. The proposed approach is applied to the Duke Energy Progress system and successfully captures 69 peak days out of 72 testing months with a 3% exceedance probability threshold. On 90% of the peak days, the actual peak hour is among the 2 h with the highest probabilities.
Frontiers in Energy ... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.944804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Energy ... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.944804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu