- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023Embargo end date: 15 May 2023 United Kingdom, SwitzerlandPublisher:Springer Science and Business Media LLC Authors: Akanksha Singh; Christian Schöb; Pietro P. M. Iannetta;Abstract Background Legumes can fix atmospheric nitrogen (N) and facilitate N availability to their companion plants in crop mixtures. However, biological nitrogen fixation (BNF) of legumes in intercrops varies largely with the identity of the legume species. The aim of our study was to understand whether BNF and concentration of plant nutrients by common bean is influenced by the identity of the companion plant species in crop mixtures. In this greenhouse pot study, common beans were cultivated with another legume (chickpea) and a cereal (Sorghum). We compared BNF, crop biomass and nutrient assimilation of all plant species grown in monocultures with plants grown in crop mixtures. Results We found beans to exhibit low levels of BNF, and to potentially compete with other species for available soil N in crop mixtures. The BNF of chickpeas however, was enhanced when grown in mixtures. Furthermore, biomass, phosphorous and potassium values of chickpea and Sorghum plants were higher in monocultures, compared to in mixtures with beans; suggesting competitive effects of beans on these plants. Concentration of calcium, magnesium and zinc in beans was higher when grown with chickpeas than with Sorghum. Conclusions It is generally assumed that legumes benefit their companion plant species. Our study highlights the contrary and shows that the specific benefits of cereal-legume mixtures are dependent on the growth rate of the species concerned. We further highlight that the potential of legume-legume mixtures is currently undervalued and may play a strong role in increasing N use efficiency of intercrop-based systems.
BMC Plant Biology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12870-023-04204-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert BMC Plant Biology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12870-023-04204-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Jan 2022 United Kingdom, SwitzerlandPublisher:Elsevier BV Rob Brooker; Lawrie K. Brown; Timothy S. George; Robin J. Pakeman; Sarah Palmer; Luke Ramsay; Christian Schöb; Nicholas Schurch; Mike J. Wilkinson;Better understanding of the mechanistic basis of plant plasticity will enhance efforts to breed crops resilient to predicted climate change. However, complexity in plasticity's conceptualisation and measurement may hinder fruitful crossover of concepts between disciplines that would enable such advances. We argue active adaptive plasticity is particularly important in shaping the fitness of wild plants, representing the first line of a plant's defence to environmental change. Here, we define how this concept may be applied to crop breeding, suggest appropriate approaches to measure it in crops, and propose a refocussing on active adaptive plasticity to enhance crop resilience. We also discuss how the same concept may have wider utility, such as in ex situ plant conservation and reintroductions. Trends in Plant Science, 27 (7) ISSN:1360-1385 ISSN:1878-4372
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tplants.2022.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tplants.2022.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jul 2021 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Ecology and evolution in ...SNSF| Ecology and evolution in practice: A plant-plant interaction-based approach to the evolution of biodiversity effects on productivityLaura Stefan; Bernhard Schmid; Bernhard Schmid; Nadine Engbersen; Christian Schöb; Jianguo Chen; Jianguo Chen; Hang Sun;Resource allocation to reproduction is a critical trait for plant fitness1,2. This trait, called harvest index in the agricultural context3-5, determines how plant biomass is converted to seed yield and consequently financial revenue from numerous major staple crops. While plant diversity has been demonstrated to increase plant biomass6-8, plant diversity effects on seed yield of crops are ambiguous9 and dependent on the production syndrome10. This discrepancy might be explained through changes in the proportion of resources invested in reproduction in response to changes in plant diversity, namely through changes in species interactions and microenvironmental conditions11-14. Here, we show that increasing crop plant diversity from monocultures over two- to four-species mixtures increased annual primary productivity, resulting in overall higher plant biomass and, to a lesser extent, higher seed yield in mixtures compared with monocultures. The difference between the two responses to diversity was due to a reduced harvest index of the eight tested crop species in mixtures, possibly because their common cultivars have been bred for maximum performance in monoculture. While crop diversification provides a sustainable measure of agricultural intensification15, the use of currently available cultivars may compromise larger gains in seed yield. We therefore advocate regional breeding programmes for crop varieties to be used in mixtures that should exploit complementarity16 among crop species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-021-00948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-021-00948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Embargo end date: 01 Jan 2015 SwitzerlandPublisher:Wiley Funded by:SNSF | Niche space construction ..., SNSF | Coexistence in plant comm...SNSF| Niche space construction and facilitation, and their evolutionary consequences ,SNSF| Coexistence in plant communities: The effect of individuals on diversity through niche consumption, niche construction and niche differentiationSchöb Christian; Kerle Sarah; Karley Alison J.; Morcillo Luna; Pakeman Robin J.; Newton Adrian C.; Brooker Rob W.;pmid: 25250812
Summary Biodiversity regulates ecosystem functions such as productivity, and experimental studies of species mixtures have revealed selection and complementarity effects driving these responses. However, the impacts of intraspecific genotypic diversity in these studies are unknown, despite it forming a substantial part of the biodiversity. In a glasshouse experiment we constructed plant communities with different levels of barley (Hordeum vulgare) genotype and weed species diversity and assessed their relative biodiversity effects through additive partitioning into selection and complementarity effects. Barley genotype diversity had weak positive effects on aboveground biomass through complementarity effects, whereas weed species diversity increased biomass predominantly through selection effects. When combined, increasing genotype diversity of barley tended to dilute the selection effect of weeds. We interpret these different effects of barley genotype and weed species diversity as the consequence of small vs large trait variation associated with intraspecific barley diversity and interspecific weed diversity, respectively. The different effects of intra‐ vs interspecific diversity highlight the underestimated and overlooked role of genetic diversity for ecosystem functioning.
New Phytologist arrow_drop_down New PhytologistArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.13043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 79 citations 79 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.13043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Jianguo, Chen; Xufang, Chen; Lishen, Qian; Yazhou, Zhang; Bo, Li; Honghua, Shi; Lu, Sun; Christian, Schöb; Hang, Sun;pmid: 38057621
Foundational cushion plants can re-organize community structures and sustain a prominent proportion of alpine biodiversity, but they are sensitive to climate change. The loss of cushion species can have broad consequences for associated biota. The potential plant community changes with the population dynamics of cushion plants remain, however, unclear. Using eight plant communities along a climatic and community successional gradient, we assessed cushion population dynamics, the underlying ecological constraints and hence associated plant community changes in alpine communities dominated by the foundational cushion plant Arenaria polytrichoides. The population dynamics of Arenaria are attributed to ecological constraints at a series of life history stages. Reproductive functions are constrained by increasing associated beneficiary plants; subsequent seedling establishment is constrained by temperature, water and light availability, extreme climate events, and interspecific competition; strong competitive exclusion may accelerate mortality and degeneration of cushion populations. Along with cushion dynamics, species composition, abundance and community structure gradually change. Once cushion plants completely degenerate, previously cushion-dominated communities shift to relatively stable communities that are overwhelmingly dominated by sedges. Climate warming may accelerate the degeneration process of A. polytrichoides. Degeneration of this foundational cushion plant will possibly induce massive changes in alpine plant communities and hence ecosystem functions in alpine ecosystems. The assessment of the population dynamics of foundation species is critical for an effective conservation of alpine biodiversity.
Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2383-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2383-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jan 2022 Switzerland, SwitzerlandPublisher:Wiley Funded by:SNSF | Ecology and evolution in ...SNSF| Ecology and evolution in practice: A plant-plant interaction-based approach to the evolution of biodiversity effects on productivityAuthors: Nadine Engbersen; Laura Stefan; Rob W. Brooker; Christian Schöb;AbstractIncreasing biodiversity generally enhances productivity through selection and complementarity effects not only in natural, but also in agricultural, systems. However, the quest to explain why diverse cropping systems are more productive than monocultures remains a central goal in agricultural science. In a mesocosm experiment, we constructed monocultures, two‐ and four‐species mixtures from eight crop species with or without fertilizer and both in temperate Switzerland and dry, Mediterranean Spain. We measured physical factors and plant traits and related these in structural equation models to selection and complementarity effects to explain seed yield differences between monocultures and mixtures. Increased crop diversity increased seed yield in Switzerland. This positive biodiversity effect was driven to almost the same extent by selection and complementarity effects, which increased with plant height and specific leaf area (SLA), respectively. Also, ecological processes driving seed yield increases from monocultures to mixtures differed from those responsible for seed yield increases through the diversification of mixtures from two to four species. Whereas selection effects were mainly driven by one species, complementarity effects were linked to larger leaf area per unit leaf weight. Seed yield increases due to mixture diversification were driven only by complementarity effects and were not mediated through the measured traits, suggesting that ecological processes beyond those measured in this study were responsible for positive diversity effects on yield beyond two‐species mixtures. By understanding the drivers of positive biodiversity–productivity relationships, we can improve our ability to predict species combinations that enhance ecosystem functioning and can promote sustainable agricultural production.
Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 01 Jan 2021 Italy, SwitzerlandPublisher:Asociacion Espanola de Ecologia Terrestre (AEET) Funded by:SNSF | Combined effects of defor...SNSF| Combined effects of deforestation and biodiversity loss on species coexistence and ecosystem functioningAuthors: Francisco I. Pugnaire; Gianalberto Losapio; Christian Schöb;handle: 2434/899245
The effects of global warming are stronger in high-elevation environments than elsewhere. Here, we review recent advances in alpine plant ecology with a focus on dry mountain ranges, mainly in Mediterranean-type climate, with a global change perspective. Raising temperatures and changes in precipitation influence both plant growth and reproduction, and therefore the spatial distribution of species. Research in high-elevation systems evidenced that plant–plant interactions involving cushion plants play a crucial role in the assembly of plant communities, influencing species richness, genetic and phylogenetic diversity, and species persistence. By buffering environmental extremes and ameliorating biophysical conditions, cushion plant species acting as ecosystem engineers are fundamental in the response of alpine ecosystems to global warming, mitigating negative impacts on different plant species with narrow niche and small distribution range.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7818/ecos.2186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7818/ecos.2186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 01 Jan 2019 SwitzerlandPublisher:Wiley Wenhong Ma; Christian Schöb; Christian Schöb; Youxu Jiang; Zhiyao Tang; Yanpei Guo; Yanpei Guo; Bernhard Schmid; Hongyan Liu; Anwar Mohammat; Shunli Yu;doi: 10.1002/ecy.2624 , 10.3929/ethz-b-000330240 , 10.60692/6rv83-38p78 , 10.60692/5xa51-f5908 , 10.5167/uzh-171431
pmid: 30644535
pmc: PMC6850503
doi: 10.1002/ecy.2624 , 10.3929/ethz-b-000330240 , 10.60692/6rv83-38p78 , 10.60692/5xa51-f5908 , 10.5167/uzh-171431
pmid: 30644535
pmc: PMC6850503
AbstractPositive biodiversity–ecosystem‐functioning (BEF) relationships are commonly found in experimental and observational studies, but how they vary in different environmental contexts and under the influence of coexisting life forms is still controversial. Investigating these variations is important for making predictions regarding the dynamics of plant communities and carbon pools under global change. We conducted this study across 433 shrubland sites in northern China. We fitted structural equation models (SEMs) to analyze the variation in the species‐richness–biomass relationships of shrubs and herbs along a wetness gradient and general liner models (GLMs) to analyze how shrub or herb biomass affected the species‐richness–biomass relationship of the other life form. We found that the positive species‐richness–biomass relationships for both shrubs and herbs became weaker or even negative with higher water availability, likely indicating stronger interspecific competition within life forms under more benign conditions. After accounting for variation in environmental contexts using residual regression, we found that the benign effect of greater facilitation by a larger shrub biomass reduced the positive species‐richness–biomass relationships of herbs, causing them to become nonsignificant. Different levels of herb biomass, however, did not change the species‐richness–biomass relationship of shrubs, possibly because greater herb biomass did not alter the stress level for shrubs. We conclude that biodiversity in the studied plant communities is particularly important for plant biomass production under arid conditions and that it might be possible to use shrubs as nurse plants to facilitate understory herb establishment in ecological restoration.
Ecology arrow_drop_down Zurich Open Repository and ArchiveArticle . 2019 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology arrow_drop_down Zurich Open Repository and ArchiveArticle . 2019 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023Embargo end date: 15 May 2023 United Kingdom, SwitzerlandPublisher:Springer Science and Business Media LLC Authors: Akanksha Singh; Christian Schöb; Pietro P. M. Iannetta;Abstract Background Legumes can fix atmospheric nitrogen (N) and facilitate N availability to their companion plants in crop mixtures. However, biological nitrogen fixation (BNF) of legumes in intercrops varies largely with the identity of the legume species. The aim of our study was to understand whether BNF and concentration of plant nutrients by common bean is influenced by the identity of the companion plant species in crop mixtures. In this greenhouse pot study, common beans were cultivated with another legume (chickpea) and a cereal (Sorghum). We compared BNF, crop biomass and nutrient assimilation of all plant species grown in monocultures with plants grown in crop mixtures. Results We found beans to exhibit low levels of BNF, and to potentially compete with other species for available soil N in crop mixtures. The BNF of chickpeas however, was enhanced when grown in mixtures. Furthermore, biomass, phosphorous and potassium values of chickpea and Sorghum plants were higher in monocultures, compared to in mixtures with beans; suggesting competitive effects of beans on these plants. Concentration of calcium, magnesium and zinc in beans was higher when grown with chickpeas than with Sorghum. Conclusions It is generally assumed that legumes benefit their companion plant species. Our study highlights the contrary and shows that the specific benefits of cereal-legume mixtures are dependent on the growth rate of the species concerned. We further highlight that the potential of legume-legume mixtures is currently undervalued and may play a strong role in increasing N use efficiency of intercrop-based systems.
BMC Plant Biology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12870-023-04204-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert BMC Plant Biology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12870-023-04204-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Jan 2022 United Kingdom, SwitzerlandPublisher:Elsevier BV Rob Brooker; Lawrie K. Brown; Timothy S. George; Robin J. Pakeman; Sarah Palmer; Luke Ramsay; Christian Schöb; Nicholas Schurch; Mike J. Wilkinson;Better understanding of the mechanistic basis of plant plasticity will enhance efforts to breed crops resilient to predicted climate change. However, complexity in plasticity's conceptualisation and measurement may hinder fruitful crossover of concepts between disciplines that would enable such advances. We argue active adaptive plasticity is particularly important in shaping the fitness of wild plants, representing the first line of a plant's defence to environmental change. Here, we define how this concept may be applied to crop breeding, suggest appropriate approaches to measure it in crops, and propose a refocussing on active adaptive plasticity to enhance crop resilience. We also discuss how the same concept may have wider utility, such as in ex situ plant conservation and reintroductions. Trends in Plant Science, 27 (7) ISSN:1360-1385 ISSN:1878-4372
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tplants.2022.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tplants.2022.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jul 2021 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Ecology and evolution in ...SNSF| Ecology and evolution in practice: A plant-plant interaction-based approach to the evolution of biodiversity effects on productivityLaura Stefan; Bernhard Schmid; Bernhard Schmid; Nadine Engbersen; Christian Schöb; Jianguo Chen; Jianguo Chen; Hang Sun;Resource allocation to reproduction is a critical trait for plant fitness1,2. This trait, called harvest index in the agricultural context3-5, determines how plant biomass is converted to seed yield and consequently financial revenue from numerous major staple crops. While plant diversity has been demonstrated to increase plant biomass6-8, plant diversity effects on seed yield of crops are ambiguous9 and dependent on the production syndrome10. This discrepancy might be explained through changes in the proportion of resources invested in reproduction in response to changes in plant diversity, namely through changes in species interactions and microenvironmental conditions11-14. Here, we show that increasing crop plant diversity from monocultures over two- to four-species mixtures increased annual primary productivity, resulting in overall higher plant biomass and, to a lesser extent, higher seed yield in mixtures compared with monocultures. The difference between the two responses to diversity was due to a reduced harvest index of the eight tested crop species in mixtures, possibly because their common cultivars have been bred for maximum performance in monoculture. While crop diversification provides a sustainable measure of agricultural intensification15, the use of currently available cultivars may compromise larger gains in seed yield. We therefore advocate regional breeding programmes for crop varieties to be used in mixtures that should exploit complementarity16 among crop species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-021-00948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-021-00948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Embargo end date: 01 Jan 2015 SwitzerlandPublisher:Wiley Funded by:SNSF | Niche space construction ..., SNSF | Coexistence in plant comm...SNSF| Niche space construction and facilitation, and their evolutionary consequences ,SNSF| Coexistence in plant communities: The effect of individuals on diversity through niche consumption, niche construction and niche differentiationSchöb Christian; Kerle Sarah; Karley Alison J.; Morcillo Luna; Pakeman Robin J.; Newton Adrian C.; Brooker Rob W.;pmid: 25250812
Summary Biodiversity regulates ecosystem functions such as productivity, and experimental studies of species mixtures have revealed selection and complementarity effects driving these responses. However, the impacts of intraspecific genotypic diversity in these studies are unknown, despite it forming a substantial part of the biodiversity. In a glasshouse experiment we constructed plant communities with different levels of barley (Hordeum vulgare) genotype and weed species diversity and assessed their relative biodiversity effects through additive partitioning into selection and complementarity effects. Barley genotype diversity had weak positive effects on aboveground biomass through complementarity effects, whereas weed species diversity increased biomass predominantly through selection effects. When combined, increasing genotype diversity of barley tended to dilute the selection effect of weeds. We interpret these different effects of barley genotype and weed species diversity as the consequence of small vs large trait variation associated with intraspecific barley diversity and interspecific weed diversity, respectively. The different effects of intra‐ vs interspecific diversity highlight the underestimated and overlooked role of genetic diversity for ecosystem functioning.
New Phytologist arrow_drop_down New PhytologistArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.13043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 79 citations 79 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.13043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Jianguo, Chen; Xufang, Chen; Lishen, Qian; Yazhou, Zhang; Bo, Li; Honghua, Shi; Lu, Sun; Christian, Schöb; Hang, Sun;pmid: 38057621
Foundational cushion plants can re-organize community structures and sustain a prominent proportion of alpine biodiversity, but they are sensitive to climate change. The loss of cushion species can have broad consequences for associated biota. The potential plant community changes with the population dynamics of cushion plants remain, however, unclear. Using eight plant communities along a climatic and community successional gradient, we assessed cushion population dynamics, the underlying ecological constraints and hence associated plant community changes in alpine communities dominated by the foundational cushion plant Arenaria polytrichoides. The population dynamics of Arenaria are attributed to ecological constraints at a series of life history stages. Reproductive functions are constrained by increasing associated beneficiary plants; subsequent seedling establishment is constrained by temperature, water and light availability, extreme climate events, and interspecific competition; strong competitive exclusion may accelerate mortality and degeneration of cushion populations. Along with cushion dynamics, species composition, abundance and community structure gradually change. Once cushion plants completely degenerate, previously cushion-dominated communities shift to relatively stable communities that are overwhelmingly dominated by sedges. Climate warming may accelerate the degeneration process of A. polytrichoides. Degeneration of this foundational cushion plant will possibly induce massive changes in alpine plant communities and hence ecosystem functions in alpine ecosystems. The assessment of the population dynamics of foundation species is critical for an effective conservation of alpine biodiversity.
Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2383-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2383-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jan 2022 Switzerland, SwitzerlandPublisher:Wiley Funded by:SNSF | Ecology and evolution in ...SNSF| Ecology and evolution in practice: A plant-plant interaction-based approach to the evolution of biodiversity effects on productivityAuthors: Nadine Engbersen; Laura Stefan; Rob W. Brooker; Christian Schöb;AbstractIncreasing biodiversity generally enhances productivity through selection and complementarity effects not only in natural, but also in agricultural, systems. However, the quest to explain why diverse cropping systems are more productive than monocultures remains a central goal in agricultural science. In a mesocosm experiment, we constructed monocultures, two‐ and four‐species mixtures from eight crop species with or without fertilizer and both in temperate Switzerland and dry, Mediterranean Spain. We measured physical factors and plant traits and related these in structural equation models to selection and complementarity effects to explain seed yield differences between monocultures and mixtures. Increased crop diversity increased seed yield in Switzerland. This positive biodiversity effect was driven to almost the same extent by selection and complementarity effects, which increased with plant height and specific leaf area (SLA), respectively. Also, ecological processes driving seed yield increases from monocultures to mixtures differed from those responsible for seed yield increases through the diversification of mixtures from two to four species. Whereas selection effects were mainly driven by one species, complementarity effects were linked to larger leaf area per unit leaf weight. Seed yield increases due to mixture diversification were driven only by complementarity effects and were not mediated through the measured traits, suggesting that ecological processes beyond those measured in this study were responsible for positive diversity effects on yield beyond two‐species mixtures. By understanding the drivers of positive biodiversity–productivity relationships, we can improve our ability to predict species combinations that enhance ecosystem functioning and can promote sustainable agricultural production.
Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 01 Jan 2021 Italy, SwitzerlandPublisher:Asociacion Espanola de Ecologia Terrestre (AEET) Funded by:SNSF | Combined effects of defor...SNSF| Combined effects of deforestation and biodiversity loss on species coexistence and ecosystem functioningAuthors: Francisco I. Pugnaire; Gianalberto Losapio; Christian Schöb;handle: 2434/899245
The effects of global warming are stronger in high-elevation environments than elsewhere. Here, we review recent advances in alpine plant ecology with a focus on dry mountain ranges, mainly in Mediterranean-type climate, with a global change perspective. Raising temperatures and changes in precipitation influence both plant growth and reproduction, and therefore the spatial distribution of species. Research in high-elevation systems evidenced that plant–plant interactions involving cushion plants play a crucial role in the assembly of plant communities, influencing species richness, genetic and phylogenetic diversity, and species persistence. By buffering environmental extremes and ameliorating biophysical conditions, cushion plant species acting as ecosystem engineers are fundamental in the response of alpine ecosystems to global warming, mitigating negative impacts on different plant species with narrow niche and small distribution range.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7818/ecos.2186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7818/ecos.2186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 01 Jan 2019 SwitzerlandPublisher:Wiley Wenhong Ma; Christian Schöb; Christian Schöb; Youxu Jiang; Zhiyao Tang; Yanpei Guo; Yanpei Guo; Bernhard Schmid; Hongyan Liu; Anwar Mohammat; Shunli Yu;doi: 10.1002/ecy.2624 , 10.3929/ethz-b-000330240 , 10.60692/6rv83-38p78 , 10.60692/5xa51-f5908 , 10.5167/uzh-171431
pmid: 30644535
pmc: PMC6850503
doi: 10.1002/ecy.2624 , 10.3929/ethz-b-000330240 , 10.60692/6rv83-38p78 , 10.60692/5xa51-f5908 , 10.5167/uzh-171431
pmid: 30644535
pmc: PMC6850503
AbstractPositive biodiversity–ecosystem‐functioning (BEF) relationships are commonly found in experimental and observational studies, but how they vary in different environmental contexts and under the influence of coexisting life forms is still controversial. Investigating these variations is important for making predictions regarding the dynamics of plant communities and carbon pools under global change. We conducted this study across 433 shrubland sites in northern China. We fitted structural equation models (SEMs) to analyze the variation in the species‐richness–biomass relationships of shrubs and herbs along a wetness gradient and general liner models (GLMs) to analyze how shrub or herb biomass affected the species‐richness–biomass relationship of the other life form. We found that the positive species‐richness–biomass relationships for both shrubs and herbs became weaker or even negative with higher water availability, likely indicating stronger interspecific competition within life forms under more benign conditions. After accounting for variation in environmental contexts using residual regression, we found that the benign effect of greater facilitation by a larger shrub biomass reduced the positive species‐richness–biomass relationships of herbs, causing them to become nonsignificant. Different levels of herb biomass, however, did not change the species‐richness–biomass relationship of shrubs, possibly because greater herb biomass did not alter the stress level for shrubs. We conclude that biodiversity in the studied plant communities is particularly important for plant biomass production under arid conditions and that it might be possible to use shrubs as nurse plants to facilitate understory herb establishment in ecological restoration.
Ecology arrow_drop_down Zurich Open Repository and ArchiveArticle . 2019 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology arrow_drop_down Zurich Open Repository and ArchiveArticle . 2019 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu