Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hassan El-Ramady; Hassan El-Ramady; László Márton; Ottó Zsiros; +11 Authors

    The response of giant reed (Arundo donax L.) to selenium (Se), added as selenate, was studied. The development, stress response, uptake, translocation, and accumulation of Se were documented in three giant reed ecotypes STM (Hungary), BL (USA), and ESP (Spain), representing different climatic zones. Plantlets regenerated from sterile tissue cultures were grown under greenhouse conditions in sand supplemented with 0, 2.5, 5, and 10 mg Se kg-1 added as sodium selenate. Total Se content was measured in different plant parts using hydride generation atomic fluorescence spectroscopy. All plants developed normally in the 0-5.0 mg Se kg-1 concentration range regardless of ecotype, but no growth occurred at 10.0 mg Se kg-1. There were no signs of chlorosis or necrosis, and the photosynthetic machinery was not affected as evidenced by no marked differences in the structure of thylakoid membranes. There was no change in the maximum quantum yield of photosystem II (Fv/Fm ratio) in the three ecotypes under Se stress, except for a significant negative effect in the ESP ecotype in the 5.0 mg Se kg-1 treatment. Glutathione peroxidase (GPx) activity increased as the Se concentration increased in the growth medium. GPx activity was higher in the shoot system than the root system in all Se treatments. All ecotypes showed great capacity of take up, translocate and accumulate selenium in their stem and leaf. Relative Se accumulation is best described as leaf ˃˃ stem ˃ root. The ESP ecotype accumulated 1783 μg g-1 in leaf, followed by BL with 1769 μg g-1, and STM with 1606 μg g-1 in the 5.0 mg Se kg-1 treatment. All ecotypes showed high values of translocation and bioaccumulation factors, particularly the ESP ecotype (10.1 and 689, respectively, at the highest tolerated Se supplementation level). Based on these findings, Arundo donax has been identified as the first monocot hyperaccumulator of selenium, because Se concentration in the leaves of all three ecotypes, and also in the stem of the ESP ecotype, is higher than 0.1% (dry weight basis) under the conditions tested. Tolerance up to 5.0 mg Se kg-1 and the Se hyperaccumulation capacity make giant reed a promising tool for Se phytoremediation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2018 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nevien Elhawat; Éva Domokos-Szabolcsy; Szilvia Veres; Miklós G. Fári; +1 Authors
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomass and Bioenerg...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biomass and Bioenergy
    Article . 2025 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomass and Bioenerg...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Biomass and Bioenergy
      Article . 2025 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hassan El-Ramady; Hassan El-Ramady; László Márton; Ottó Zsiros; +11 Authors

    The response of giant reed (Arundo donax L.) to selenium (Se), added as selenate, was studied. The development, stress response, uptake, translocation, and accumulation of Se were documented in three giant reed ecotypes STM (Hungary), BL (USA), and ESP (Spain), representing different climatic zones. Plantlets regenerated from sterile tissue cultures were grown under greenhouse conditions in sand supplemented with 0, 2.5, 5, and 10 mg Se kg-1 added as sodium selenate. Total Se content was measured in different plant parts using hydride generation atomic fluorescence spectroscopy. All plants developed normally in the 0-5.0 mg Se kg-1 concentration range regardless of ecotype, but no growth occurred at 10.0 mg Se kg-1. There were no signs of chlorosis or necrosis, and the photosynthetic machinery was not affected as evidenced by no marked differences in the structure of thylakoid membranes. There was no change in the maximum quantum yield of photosystem II (Fv/Fm ratio) in the three ecotypes under Se stress, except for a significant negative effect in the ESP ecotype in the 5.0 mg Se kg-1 treatment. Glutathione peroxidase (GPx) activity increased as the Se concentration increased in the growth medium. GPx activity was higher in the shoot system than the root system in all Se treatments. All ecotypes showed great capacity of take up, translocate and accumulate selenium in their stem and leaf. Relative Se accumulation is best described as leaf ˃˃ stem ˃ root. The ESP ecotype accumulated 1783 μg g-1 in leaf, followed by BL with 1769 μg g-1, and STM with 1606 μg g-1 in the 5.0 mg Se kg-1 treatment. All ecotypes showed high values of translocation and bioaccumulation factors, particularly the ESP ecotype (10.1 and 689, respectively, at the highest tolerated Se supplementation level). Based on these findings, Arundo donax has been identified as the first monocot hyperaccumulator of selenium, because Se concentration in the leaves of all three ecotypes, and also in the stem of the ESP ecotype, is higher than 0.1% (dry weight basis) under the conditions tested. Tolerance up to 5.0 mg Se kg-1 and the Se hyperaccumulation capacity make giant reed a promising tool for Se phytoremediation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2018 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nevien Elhawat; Éva Domokos-Szabolcsy; Szilvia Veres; Miklós G. Fári; +1 Authors
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomass and Bioenerg...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biomass and Bioenergy
    Article . 2025 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomass and Bioenerg...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Biomass and Bioenergy
      Article . 2025 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph