- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Tasmin Hossain; Daniela S. Jones; Edward Godfrey; Daniel Saloni; Mahmoud Sharara; Damon S. Hartley;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Curtis D. Jones; Bruce E. Dale; Ashwan Reddy; Kamalakanta Sahoo; Mahmoud A. Sharara; Mahmoud A. Sharara; Roberto C. Izaurralde; Xuesong Zhang; Seungdo Kim; Troy Runge;pmid: 32018088
This study assesses the role of spatial-resolution and spatial-variations in environmental impacts estimation and decision-making for corn-stover harvesting to produce biofuels. Geospatial corn-stover yields and environmental impacts [global warming potential (GWP), eutrophication, and soil-loss] dataset for two study areas in Wisconsin and Michigan were generated through Environmental Policy Integrated Climate (EPIC) model and aggregated at different spatial-resolutions (i.e., 100; 1000; 10,000 ha). For each spatial-resolution, decision-making was accomplished using an optimization routine to minimize different environmental impacts associated with harvesting stover to meet varied biomass demands. The results of the study showed that selective harvesting at higher-resolution (or lower-aggregation level) can result in significantly lower environmental impacts, especially at low stover demand levels. Additionally, the increased spatial resolution had more impact in minimizing the environmental impacts of corn stover harvest under a more variable landscape such as terrains and its influences are more pronounced for soil-loss and eutrophication potential compared to GWP.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.122896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.122896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Alison Deviney; John Classen; Jackie Bruce; Mahmoud Sharara;doi: 10.3390/su13010015
Intensification and concentration of swine farming has provided economic benefit to rural communities but also negative environmental and human health impacts, particularly from the use of the lagoon-sprayfield system for manure management. Although cost effective, this system is susceptible to poor management, unpleasant odor and other emissions, and inundation during extreme weather events. Competition for manure-spreading acres with other livestock or encroaching development can also pose a problem. This study examines two agreements between industry and government designed to develop and implement improved manure management technologies for swine farms: a voluntary agreement between the attorney general of North Carolina and Smithfield Foods and a consent judgment between the State of Missouri and Premium Standard Farms. Individuals involved in executing these agreements were interviewed to gain insight from their perspective on those processes and lessons they learned from their experience. Common themes among participant responses to support transition processes included the need to involve multiple stakeholder groups, clearly define goals, understand the system, allow time for incremental change, and provide adequate “protected space” for technology development and implementation. Viewing these themes through the lens of multi-level perspective theory identifies leverage points throughout the system to support transitioning farms to a more sustainable path of manure management.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/15/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/15/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Mahmoud Sharara; Daesoo Kim; Sammy Sadaka; Greg Thoma;doi: 10.3390/en12214081
Sustainable swine manure management is critical to reducing adverse environmental impacts on surrounding ecosystems, particularly in regions of intensive production. Conventional swine manure management practices contribute to agricultural greenhouse gas (GHG) emissions and aquatic eutrophication. There is a lack of full-scale research of the thermochemical conversion of solid-separated swine manure. This study utilizes a consequential life cycle assessment (CLCA) to investigate the environmental impacts of the thermal gasification of swine manure solids as a manure management strategy. CLCA is a modeling tool for a comprehensive estimation of the environmental impacts attributable to a production system. The present study evaluates merely the gasification scenario as it includes manure drying, syngas production, and biochar field application. The assessment revealed that liquid storage of manure had the highest contribution of 57.5% to GHG emissions for the entire proposed manure management scenario. Solid-liquid separation decreased GHG emissions from the manure liquid fraction. Swine manure solids separation, drying, and gasification resulted in a net energy expenditure of 12.3 MJ for each functional unit (treatment of 1 metric ton of manure slurry). Land application of manure slurry mixed with biochar residue could potentially be credited with 5.9 kg CO2-eq in avoided GHG emissions, and 135 MJ of avoided fossil fuel energy. Manure drying had the highest share of fossil fuel energy use. Increasing thermochemical conversion efficiency was shown to decrease overall energy use significantly. Improvements in drying technology efficiency, or the use of solar or waste-heat streams as energy sources, can significantly improve the potential environmental impacts of manure solids gasification.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/21/4081/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12214081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/21/4081/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12214081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Tasmin Hossain; Daniela S. Jones; Edward Godfrey; Daniel Saloni; Mahmoud Sharara; Damon S. Hartley;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4645274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4645274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Society of Agricultural and Biological Engineers (ASABE) Mahmoud Sharara; Richard K. Kolesch; Erin L. Cortus; Rebecca A. Larson; John J. Classen; Kevin A. Janni;doi: 10.13031/ja.14661
HighlightsAnimal agriculture intensification has greatly affected nutrient cycling and circularity in food production systems.Various nutrient balance methods are developed to improve nutrient management at various spatial scales.Balance-derived thresholds for action are identified using real-life examples in dairy production.Outreach and knowledge exchange are critical for development, adoption, and improvement of nutrient balance methods.Abstract. Animal agriculture is a major consumer and generator of both macro- and micronutrients. Intensification and regional concentration of animal production, due to economic and logistical advantages, have altered nutrient fluxes in agriculture systems, causing increased stock of nutrients in soils and, consequently, their emission to air and transport to surface water and groundwater. Established nutrient and manure planning frameworks, while effective in addressing nutrient point sources and using manure to enhance fertility and soil quality, have not been wholly successful in addressing farm- and region-scale challenges with nutrient concentrations. This review article addresses nutrient management issues associated with modern animal agriculture by advancing the use of nutrient budgets and balances. This is accomplished by establishing core concepts for nutrient budgets and balances as they apply to animal agriculture. Relevant spatial scales for these budgets are reviewed, including field, whole-farm, and watershed scales, along with proposed methodologies and data sources for each. This study also identifies existing region- and commodity-specific metrics (when available) for use as thresholds for corrective action toward more balanced nutrient budgets. Finally, recommendations for the community of practitioners, researchers, and educators are provided to address nutrient imbalance in animal agriculture systems. At farm and region scale, nutrient balance investments will be needed to strengthen accounting methodologies, develop appropriate data sources for measurements, identify thresholds for action, and apply the methods in appropriate settings and decisions. Data availability and uncertainty are recognized as key limitations facing wider adoption of these concepts, particularly considering data ownership and privacy concerns. The lack of transparent datasets that capture current animal production practices and their impact on manure composition and nutrient cycling is a gap facing these methodologies. The lack of engagement by practitioners and producers in the development phase of such tools greatly affects their adoption and utility. The need for continued engagement in establishing accepted methodologies, training, data collection, and education are crucial to establish farm- and region-scale methods and measure their value to nutrient planning over time. Keywords: Farm scale, Livestock, Manure nutrients, Nutrient budget, Poultry, Regional scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13031/ja.14661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13031/ja.14661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAuthors: Mahmoud A. Sharara; Sammy Sadaka;doi: 10.3390/en11040957
The objectives of this article are to offer a comprehensive evaluation of the opportunities and barriers for swine manure conversion technologies and to shed light on the gaps that might require further investigation to improve the applicability of these technologies. The challenges of manure management have been propagated alongside the global growth of swine production. Various technologies that target the production of energy, fuels, and bioproducts from swine manure have been reported. These technologies include pretreatments, i.e., drying, and solid separation; biological techniques, i.e., composting, anaerobic digestion, and biodrying; and thermochemical techniques, i.e., combustion, gasification, pyrolysis, liquefaction, and carbonization. The review highlights the yields and qualities of products, i.e., energy, gaseous fuel, liquid fuel, and solid fuel, of each technology. It exhibits that the choice of a conversion technology predominantly depends on the feedstock properties, the specifics of the conversion technique, the market values of the end products as well as the local regulations. The challenges associated with the presented techniques are discussed to ameliorate research and development in these areas. The notable finding of this paper is that there is a need for full-scale research in the area of thermochemical conversion of solid-separated swine manure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:American Chemical Society (ACS) Angela R. Harris; Emine N. Fidan; Natalie G. Nelson; Ryan E. Emanuel; Theo Jass; Sophia Kathariou; Jeffrey Niedermeyer; Mahmoud Sharara; Francis Lajara de los Reyes; Diego A. Riveros-Iregui; Jill R. Stewart;Hurricane Florence brought unprecedented rainfall and flooding to Eastern North Carolina in 2018. Extensive flooding had the potential to mobilize microbial contaminants from a variety of sources. Our study evaluated microbial contaminants in surface waters at 40 sites across Eastern North Carolina 1 week after the hurricane made landfall (Phase 1) and one month later (Phase 2). High concentrations of Escherichia coli were detected in flowing channel and floodwater samples across both phases; however, channel samples during Phase 2 had higher concentrations of E. coli compared to Phase 1. Human- and swine-associated fecal markers were detected in 26% and 9% of samples, respectively, with no trends related to phase of sampling. Arcobacter butzleri was previously shown to be recovered from most (73%) samples, and detection of this pathogen was not associated with any source-associated fecal marker. Detection of Listeria spp. was associated with the swine-associated fecal marker. These results suggest that improved swine and human feces management should be explored to prevent microbial contamination in surface water, especially in regions where extreme rainfall may increase due to climate change. Sampling at higher frequency surrounding rainfall events would provide more detailed characterization of the risks posed by floodwater at different time scales and under different antecedent conditions.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestwater.1c00103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestwater.1c00103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Tasmin Hossain; Daniela S. Jones; Edward Godfrey; Daniel Saloni; Mahmoud Sharara; Damon S. Hartley;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Curtis D. Jones; Bruce E. Dale; Ashwan Reddy; Kamalakanta Sahoo; Mahmoud A. Sharara; Mahmoud A. Sharara; Roberto C. Izaurralde; Xuesong Zhang; Seungdo Kim; Troy Runge;pmid: 32018088
This study assesses the role of spatial-resolution and spatial-variations in environmental impacts estimation and decision-making for corn-stover harvesting to produce biofuels. Geospatial corn-stover yields and environmental impacts [global warming potential (GWP), eutrophication, and soil-loss] dataset for two study areas in Wisconsin and Michigan were generated through Environmental Policy Integrated Climate (EPIC) model and aggregated at different spatial-resolutions (i.e., 100; 1000; 10,000 ha). For each spatial-resolution, decision-making was accomplished using an optimization routine to minimize different environmental impacts associated with harvesting stover to meet varied biomass demands. The results of the study showed that selective harvesting at higher-resolution (or lower-aggregation level) can result in significantly lower environmental impacts, especially at low stover demand levels. Additionally, the increased spatial resolution had more impact in minimizing the environmental impacts of corn stover harvest under a more variable landscape such as terrains and its influences are more pronounced for soil-loss and eutrophication potential compared to GWP.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.122896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.122896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Alison Deviney; John Classen; Jackie Bruce; Mahmoud Sharara;doi: 10.3390/su13010015
Intensification and concentration of swine farming has provided economic benefit to rural communities but also negative environmental and human health impacts, particularly from the use of the lagoon-sprayfield system for manure management. Although cost effective, this system is susceptible to poor management, unpleasant odor and other emissions, and inundation during extreme weather events. Competition for manure-spreading acres with other livestock or encroaching development can also pose a problem. This study examines two agreements between industry and government designed to develop and implement improved manure management technologies for swine farms: a voluntary agreement between the attorney general of North Carolina and Smithfield Foods and a consent judgment between the State of Missouri and Premium Standard Farms. Individuals involved in executing these agreements were interviewed to gain insight from their perspective on those processes and lessons they learned from their experience. Common themes among participant responses to support transition processes included the need to involve multiple stakeholder groups, clearly define goals, understand the system, allow time for incremental change, and provide adequate “protected space” for technology development and implementation. Viewing these themes through the lens of multi-level perspective theory identifies leverage points throughout the system to support transitioning farms to a more sustainable path of manure management.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/15/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/15/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Mahmoud Sharara; Daesoo Kim; Sammy Sadaka; Greg Thoma;doi: 10.3390/en12214081
Sustainable swine manure management is critical to reducing adverse environmental impacts on surrounding ecosystems, particularly in regions of intensive production. Conventional swine manure management practices contribute to agricultural greenhouse gas (GHG) emissions and aquatic eutrophication. There is a lack of full-scale research of the thermochemical conversion of solid-separated swine manure. This study utilizes a consequential life cycle assessment (CLCA) to investigate the environmental impacts of the thermal gasification of swine manure solids as a manure management strategy. CLCA is a modeling tool for a comprehensive estimation of the environmental impacts attributable to a production system. The present study evaluates merely the gasification scenario as it includes manure drying, syngas production, and biochar field application. The assessment revealed that liquid storage of manure had the highest contribution of 57.5% to GHG emissions for the entire proposed manure management scenario. Solid-liquid separation decreased GHG emissions from the manure liquid fraction. Swine manure solids separation, drying, and gasification resulted in a net energy expenditure of 12.3 MJ for each functional unit (treatment of 1 metric ton of manure slurry). Land application of manure slurry mixed with biochar residue could potentially be credited with 5.9 kg CO2-eq in avoided GHG emissions, and 135 MJ of avoided fossil fuel energy. Manure drying had the highest share of fossil fuel energy use. Increasing thermochemical conversion efficiency was shown to decrease overall energy use significantly. Improvements in drying technology efficiency, or the use of solar or waste-heat streams as energy sources, can significantly improve the potential environmental impacts of manure solids gasification.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/21/4081/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12214081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/21/4081/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12214081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Tasmin Hossain; Daniela S. Jones; Edward Godfrey; Daniel Saloni; Mahmoud Sharara; Damon S. Hartley;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4645274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4645274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Society of Agricultural and Biological Engineers (ASABE) Mahmoud Sharara; Richard K. Kolesch; Erin L. Cortus; Rebecca A. Larson; John J. Classen; Kevin A. Janni;doi: 10.13031/ja.14661
HighlightsAnimal agriculture intensification has greatly affected nutrient cycling and circularity in food production systems.Various nutrient balance methods are developed to improve nutrient management at various spatial scales.Balance-derived thresholds for action are identified using real-life examples in dairy production.Outreach and knowledge exchange are critical for development, adoption, and improvement of nutrient balance methods.Abstract. Animal agriculture is a major consumer and generator of both macro- and micronutrients. Intensification and regional concentration of animal production, due to economic and logistical advantages, have altered nutrient fluxes in agriculture systems, causing increased stock of nutrients in soils and, consequently, their emission to air and transport to surface water and groundwater. Established nutrient and manure planning frameworks, while effective in addressing nutrient point sources and using manure to enhance fertility and soil quality, have not been wholly successful in addressing farm- and region-scale challenges with nutrient concentrations. This review article addresses nutrient management issues associated with modern animal agriculture by advancing the use of nutrient budgets and balances. This is accomplished by establishing core concepts for nutrient budgets and balances as they apply to animal agriculture. Relevant spatial scales for these budgets are reviewed, including field, whole-farm, and watershed scales, along with proposed methodologies and data sources for each. This study also identifies existing region- and commodity-specific metrics (when available) for use as thresholds for corrective action toward more balanced nutrient budgets. Finally, recommendations for the community of practitioners, researchers, and educators are provided to address nutrient imbalance in animal agriculture systems. At farm and region scale, nutrient balance investments will be needed to strengthen accounting methodologies, develop appropriate data sources for measurements, identify thresholds for action, and apply the methods in appropriate settings and decisions. Data availability and uncertainty are recognized as key limitations facing wider adoption of these concepts, particularly considering data ownership and privacy concerns. The lack of transparent datasets that capture current animal production practices and their impact on manure composition and nutrient cycling is a gap facing these methodologies. The lack of engagement by practitioners and producers in the development phase of such tools greatly affects their adoption and utility. The need for continued engagement in establishing accepted methodologies, training, data collection, and education are crucial to establish farm- and region-scale methods and measure their value to nutrient planning over time. Keywords: Farm scale, Livestock, Manure nutrients, Nutrient budget, Poultry, Regional scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13031/ja.14661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13031/ja.14661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAuthors: Mahmoud A. Sharara; Sammy Sadaka;doi: 10.3390/en11040957
The objectives of this article are to offer a comprehensive evaluation of the opportunities and barriers for swine manure conversion technologies and to shed light on the gaps that might require further investigation to improve the applicability of these technologies. The challenges of manure management have been propagated alongside the global growth of swine production. Various technologies that target the production of energy, fuels, and bioproducts from swine manure have been reported. These technologies include pretreatments, i.e., drying, and solid separation; biological techniques, i.e., composting, anaerobic digestion, and biodrying; and thermochemical techniques, i.e., combustion, gasification, pyrolysis, liquefaction, and carbonization. The review highlights the yields and qualities of products, i.e., energy, gaseous fuel, liquid fuel, and solid fuel, of each technology. It exhibits that the choice of a conversion technology predominantly depends on the feedstock properties, the specifics of the conversion technique, the market values of the end products as well as the local regulations. The challenges associated with the presented techniques are discussed to ameliorate research and development in these areas. The notable finding of this paper is that there is a need for full-scale research in the area of thermochemical conversion of solid-separated swine manure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:American Chemical Society (ACS) Angela R. Harris; Emine N. Fidan; Natalie G. Nelson; Ryan E. Emanuel; Theo Jass; Sophia Kathariou; Jeffrey Niedermeyer; Mahmoud Sharara; Francis Lajara de los Reyes; Diego A. Riveros-Iregui; Jill R. Stewart;Hurricane Florence brought unprecedented rainfall and flooding to Eastern North Carolina in 2018. Extensive flooding had the potential to mobilize microbial contaminants from a variety of sources. Our study evaluated microbial contaminants in surface waters at 40 sites across Eastern North Carolina 1 week after the hurricane made landfall (Phase 1) and one month later (Phase 2). High concentrations of Escherichia coli were detected in flowing channel and floodwater samples across both phases; however, channel samples during Phase 2 had higher concentrations of E. coli compared to Phase 1. Human- and swine-associated fecal markers were detected in 26% and 9% of samples, respectively, with no trends related to phase of sampling. Arcobacter butzleri was previously shown to be recovered from most (73%) samples, and detection of this pathogen was not associated with any source-associated fecal marker. Detection of Listeria spp. was associated with the swine-associated fecal marker. These results suggest that improved swine and human feces management should be explored to prevent microbial contamination in surface water, especially in regions where extreme rainfall may increase due to climate change. Sampling at higher frequency surrounding rainfall events would provide more detailed characterization of the risks posed by floodwater at different time scales and under different antecedent conditions.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestwater.1c00103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestwater.1c00103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu