- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Elsevier BV Authors:Nazli Demirel;
Nazli Demirel
Nazli Demirel in OpenAIREEkin Akoglu;
Aylin Ulman; Pınar Ertor-Akyazi; +4 AuthorsEkin Akoglu
Ekin Akoglu in OpenAIRENazli Demirel;
Nazli Demirel
Nazli Demirel in OpenAIREEkin Akoglu;
Aylin Ulman; Pınar Ertor-Akyazi;Ekin Akoglu
Ekin Akoglu in OpenAIREGüzin Gül;
Dalida Bedikoğlu; Taner Yıldız; I. Noyan Yilmaz;Güzin Gül
Güzin Gül in OpenAIREpmid: 36399938
Ecosystem regime shifts can alter ecosystem services, affect human well-being, and trigger policy conflicts due to economic losses and reductions in societal and environmental benefits. Intensive anthropogenic activities make the Sea of Marmara ecosystem suffer from nearly all existing available types of ecosystem pressures such as biological degradation, exposure to hydrological processes, nutrient and organic matter enrichment, plastic pollution, ocean warming, resulting in deterioration of habitats. In this study, using an integrated ecosystem assessment, we investigated for the first time the historical development and ecosystem state of the Sea of Marmara. Multivariate analyses were applied to the most comprehensive and unique long-term data sets of 9 biotic and 15 abiotic variables for ecosystem state and drivers respectively, from 1986 to 2020. Observed changes were confirmed by detecting shifts in the datasets. The Sea of Marmara ecosystem was classified into three regimes: i) an early initial state regime under the top-down control of predatory medium pelagic fish and fisheries exploitation until mid-1990s, ii) a transitional regime between mid-1990s and mid-2010s as from ecosystem restructuring, and iii) an alternate state late regime with prevailing impacts of climate change from mid-2010s until 2020. During the 20 years transitional regime, three different phases were also characterized; i) the 1st phase between mid-1990s and early 2000s with its gradual change in ecosystem state from a decrease in predators and significant shift in physical drivers of the ecosystem, ii) the 2nd phase between 2000 and mid-2000s with a strong shift in ecosystem state, an ongoing increase in climate indices and fishing mortality, and a gradual decrease in water quality; and iii) the 3rd phase between mid-2000s and mid-2010s with the reorganization of the ecosystem dominated by small pelagic fish and ameliorated water quality. During late regime, we observed that most of the biotic variables, mainly fish biomass, and climate variables did not return to their initial state despite the improvement in some abiotic variables such as water quality. We identify these observed changes in the SoM ecosystem as a non-linear regime shift. Finally, we also developed concrete suggestions for improved regional management.
Aperta - TÜBİTAK Açı... arrow_drop_down Aperta - TÜBİTAK Açık ArşiviOther literature type . 2023License: CC BYData sources: Aperta - TÜBİTAK Açık ArşiviMarine Environmental ResearchArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2022.105794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aperta - TÜBİTAK Açı... arrow_drop_down Aperta - TÜBİTAK Açık ArşiviOther literature type . 2023License: CC BYData sources: Aperta - TÜBİTAK Açık ArşiviMarine Environmental ResearchArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2022.105794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Elsevier BV Authors:Nazli Demirel;
Nazli Demirel
Nazli Demirel in OpenAIREEkin Akoglu;
Aylin Ulman; Pınar Ertor-Akyazi; +4 AuthorsEkin Akoglu
Ekin Akoglu in OpenAIRENazli Demirel;
Nazli Demirel
Nazli Demirel in OpenAIREEkin Akoglu;
Aylin Ulman; Pınar Ertor-Akyazi;Ekin Akoglu
Ekin Akoglu in OpenAIREGüzin Gül;
Dalida Bedikoğlu; Taner Yıldız; I. Noyan Yilmaz;Güzin Gül
Güzin Gül in OpenAIREpmid: 36399938
Ecosystem regime shifts can alter ecosystem services, affect human well-being, and trigger policy conflicts due to economic losses and reductions in societal and environmental benefits. Intensive anthropogenic activities make the Sea of Marmara ecosystem suffer from nearly all existing available types of ecosystem pressures such as biological degradation, exposure to hydrological processes, nutrient and organic matter enrichment, plastic pollution, ocean warming, resulting in deterioration of habitats. In this study, using an integrated ecosystem assessment, we investigated for the first time the historical development and ecosystem state of the Sea of Marmara. Multivariate analyses were applied to the most comprehensive and unique long-term data sets of 9 biotic and 15 abiotic variables for ecosystem state and drivers respectively, from 1986 to 2020. Observed changes were confirmed by detecting shifts in the datasets. The Sea of Marmara ecosystem was classified into three regimes: i) an early initial state regime under the top-down control of predatory medium pelagic fish and fisheries exploitation until mid-1990s, ii) a transitional regime between mid-1990s and mid-2010s as from ecosystem restructuring, and iii) an alternate state late regime with prevailing impacts of climate change from mid-2010s until 2020. During the 20 years transitional regime, three different phases were also characterized; i) the 1st phase between mid-1990s and early 2000s with its gradual change in ecosystem state from a decrease in predators and significant shift in physical drivers of the ecosystem, ii) the 2nd phase between 2000 and mid-2000s with a strong shift in ecosystem state, an ongoing increase in climate indices and fishing mortality, and a gradual decrease in water quality; and iii) the 3rd phase between mid-2000s and mid-2010s with the reorganization of the ecosystem dominated by small pelagic fish and ameliorated water quality. During late regime, we observed that most of the biotic variables, mainly fish biomass, and climate variables did not return to their initial state despite the improvement in some abiotic variables such as water quality. We identify these observed changes in the SoM ecosystem as a non-linear regime shift. Finally, we also developed concrete suggestions for improved regional management.
Aperta - TÜBİTAK Açı... arrow_drop_down Aperta - TÜBİTAK Açık ArşiviOther literature type . 2023License: CC BYData sources: Aperta - TÜBİTAK Açık ArşiviMarine Environmental ResearchArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2022.105794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aperta - TÜBİTAK Açı... arrow_drop_down Aperta - TÜBİTAK Açık ArşiviOther literature type . 2023License: CC BYData sources: Aperta - TÜBİTAK Açık ArşiviMarine Environmental ResearchArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2022.105794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, Italy, ItalyPublisher:Oxford University Press (OUP) Authors:Daniel Pauly;
Manuel Dureuil;Daniel Pauly
Daniel Pauly in OpenAIREMaria Lourdes Deng Palomares;
Maria Lourdes Deng Palomares
Maria Lourdes Deng Palomares in OpenAIREGiuseppe Scarcella;
+6 AuthorsGiuseppe Scarcella
Giuseppe Scarcella in OpenAIREDaniel Pauly;
Manuel Dureuil;Daniel Pauly
Daniel Pauly in OpenAIREMaria Lourdes Deng Palomares;
Maria Lourdes Deng Palomares
Maria Lourdes Deng Palomares in OpenAIREGiuseppe Scarcella;
Giuseppe Scarcella
Giuseppe Scarcella in OpenAIREDonna Dimarchopoulou;
Donna Dimarchopoulou
Donna Dimarchopoulou in OpenAIREAthanassios C Tsikliras;
Athanassios C Tsikliras
Athanassios C Tsikliras in OpenAIRENazli Demirel;
Nazli Demirel
Nazli Demirel in OpenAIREGianpaolo Coro;
Henning Winker;Gianpaolo Coro
Gianpaolo Coro in OpenAIRERainer Froese;
Rainer Froese
Rainer Froese in OpenAIREhandle: 20.500.14243/361448
AbstractThe Law of the Sea and regional and national laws and agreements require exploited populations or stocks to be managed so that they can produce maximum sustainable yields. However, exploitation level and stock status are unknown for most stocks because the data required for full stock assessments are missing. This study presents a new method [abundance maximum sustainable yields (AMSY)] that estimates relative population size when no catch data are available using time series of catch-per-unit-effort or other relative abundance indices as the main input. AMSY predictions for relative stock size were not significantly different from the “true” values when compared with simulated data. Also, they were not significantly different from relative stock size estimated by data-rich models in 88% of the comparisons within 140 real stocks. Application of AMSY to 38 data-poor stocks showed the suitability of the method and led to the first assessments for 23 species. Given the lack of catch data as input, AMSY estimates of exploitation come with wide margins of uncertainty, which may not be suitable for management. However, AMSY seems to be well suited for estimating productivity as well as relative stock size and may, therefore, aid in the management of data-poor stocks.
IRIS Cnr arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icesjms/fsz230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icesjms/fsz230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, Italy, ItalyPublisher:Oxford University Press (OUP) Authors:Daniel Pauly;
Manuel Dureuil;Daniel Pauly
Daniel Pauly in OpenAIREMaria Lourdes Deng Palomares;
Maria Lourdes Deng Palomares
Maria Lourdes Deng Palomares in OpenAIREGiuseppe Scarcella;
+6 AuthorsGiuseppe Scarcella
Giuseppe Scarcella in OpenAIREDaniel Pauly;
Manuel Dureuil;Daniel Pauly
Daniel Pauly in OpenAIREMaria Lourdes Deng Palomares;
Maria Lourdes Deng Palomares
Maria Lourdes Deng Palomares in OpenAIREGiuseppe Scarcella;
Giuseppe Scarcella
Giuseppe Scarcella in OpenAIREDonna Dimarchopoulou;
Donna Dimarchopoulou
Donna Dimarchopoulou in OpenAIREAthanassios C Tsikliras;
Athanassios C Tsikliras
Athanassios C Tsikliras in OpenAIRENazli Demirel;
Nazli Demirel
Nazli Demirel in OpenAIREGianpaolo Coro;
Henning Winker;Gianpaolo Coro
Gianpaolo Coro in OpenAIRERainer Froese;
Rainer Froese
Rainer Froese in OpenAIREhandle: 20.500.14243/361448
AbstractThe Law of the Sea and regional and national laws and agreements require exploited populations or stocks to be managed so that they can produce maximum sustainable yields. However, exploitation level and stock status are unknown for most stocks because the data required for full stock assessments are missing. This study presents a new method [abundance maximum sustainable yields (AMSY)] that estimates relative population size when no catch data are available using time series of catch-per-unit-effort or other relative abundance indices as the main input. AMSY predictions for relative stock size were not significantly different from the “true” values when compared with simulated data. Also, they were not significantly different from relative stock size estimated by data-rich models in 88% of the comparisons within 140 real stocks. Application of AMSY to 38 data-poor stocks showed the suitability of the method and led to the first assessments for 23 species. Given the lack of catch data as input, AMSY estimates of exploitation come with wide margins of uncertainty, which may not be suitable for management. However, AMSY seems to be well suited for estimating productivity as well as relative stock size and may, therefore, aid in the management of data-poor stocks.
IRIS Cnr arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icesjms/fsz230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icesjms/fsz230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Frontiers Media SA Mohamed AlMusallami; Mark Dimech; Franklin Francis; Waleed Hamza; Aaron C. Henderson; Sabir Bin Muzaffar; Giuseppe Scarcella;Nazli Demirel;
Dario Pinello;Nazli Demirel
Nazli Demirel in OpenAIREThis study evaluates the stock status of Scomberomorus commerson in the southern Arabian Gulf, particularly in Abu Dhabi waters, using length-based models to address data limitations in fisheries assessments. The findings contribute critical insights into management practices using four length-based models, namely, LBI, LBB, LBSPR, and LIME, to analyze length frequency distributions from commercial catches between 2011 and 2023. The results indicate that the stock is overfished, with low proportions of mature and optimal-sized individuals and an excessive harvest of juveniles, as shown by the model estimates of F/M ratios and SPR values below target levels. From 2011 to 2019, the biomass declined sharply, but signs of recovery were evident by 2023 due to management actions, such as a gillnet ban introduced in 2019. The final-year estimates revealed a B/Bmsy ratio of 1.0 and F/M of 1.2, suggesting ongoing but reduced overfishing pressures. These outcomes underscore the importance of ongoing data-limited assessment methods in monitoring exploited stocks, providing evidence that restrictive measures have positively impacted biomass recovery. The convergence of outputs across methods, such as the indication of overfishing in S. commerson stocks, suggests that implementing multiple models enhances the robustness of management recommendations, including the enforcement of minimum size limits or reductions in fishing efforts or restriction of certain fishing methods. Overall, this study highlights the importance of using multiple models and choosing appropriate priors to improve the quality of stock assessments in data-limited fisheries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2024.1492238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2024.1492238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Frontiers Media SA Mohamed AlMusallami; Mark Dimech; Franklin Francis; Waleed Hamza; Aaron C. Henderson; Sabir Bin Muzaffar; Giuseppe Scarcella;Nazli Demirel;
Dario Pinello;Nazli Demirel
Nazli Demirel in OpenAIREThis study evaluates the stock status of Scomberomorus commerson in the southern Arabian Gulf, particularly in Abu Dhabi waters, using length-based models to address data limitations in fisheries assessments. The findings contribute critical insights into management practices using four length-based models, namely, LBI, LBB, LBSPR, and LIME, to analyze length frequency distributions from commercial catches between 2011 and 2023. The results indicate that the stock is overfished, with low proportions of mature and optimal-sized individuals and an excessive harvest of juveniles, as shown by the model estimates of F/M ratios and SPR values below target levels. From 2011 to 2019, the biomass declined sharply, but signs of recovery were evident by 2023 due to management actions, such as a gillnet ban introduced in 2019. The final-year estimates revealed a B/Bmsy ratio of 1.0 and F/M of 1.2, suggesting ongoing but reduced overfishing pressures. These outcomes underscore the importance of ongoing data-limited assessment methods in monitoring exploited stocks, providing evidence that restrictive measures have positively impacted biomass recovery. The convergence of outputs across methods, such as the indication of overfishing in S. commerson stocks, suggests that implementing multiple models enhances the robustness of management recommendations, including the enforcement of minimum size limits or reductions in fishing efforts or restriction of certain fishing methods. Overall, this study highlights the importance of using multiple models and choosing appropriate priors to improve the quality of stock assessments in data-limited fisheries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2024.1492238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2024.1492238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu