- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 01 Jan 2018 SwitzerlandPublisher:Elsevier BV L. Geissbühler; V. Becattini; G. Zanganeh; S. Zavattoni; M. Barbato; A. Haselbacher; A. Steinfeld;Experimental and numerical results from the world's first advanced adiabatic compressed air energy storage (AA-CAES) pilot-scale plant are presented. The plant was built in an unused tunnel with a diameter of 4.9 m in which two concrete plugs delimited a mostly unlined cavern of 120 m length. The sensible thermal-energy storage (TES) with a capacity of 12 MWhth was placed inside the cavern. The pilot plant was operated with charging/discharging cycles of various durations, air temperatures of up to 550 °C, and maximum cavern gauge pressures of 7 bar. Higher pressures could not be reached because of leaks that were traced mainly to the concrete plugs. Simulations using a coupled model of the TES and cavern showed good agreement with measurements. Cycle energy efficiencies of the TES were determined to lie between 76% and 90%. The estimated round-trip efficiency of the pilot plant was based on the measured TES performance and estimated performances of the other components, yielding values of 63–74%, which compares favorably with the usually quoted values of 60–75% for prospective AA-CAES plants. Journal of Energy Storage, 17 ISSN:2352-152X
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2018.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 145 citations 145 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2018.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014Embargo end date: 01 Jan 2014 SwitzerlandPublisher:Elsevier BV Giw Zanganeh; Aldo Steinfeld; Aldo Steinfeld; Maurizio Barbato; Simone Zavattoni; Andrea Pedretti;The present study aims at dimensioning and modeling, by means of accurate time-dependent 3D computational fluid dynamics simulations, the behavior of a high temperature rock-bed TES system. The latter is exploited to fulfill the round-the-clock energy requirements of a reference 80 MWe industrial-scale CSP plant, based upon the Airlight Energy technology, which uses air as heat transfer fluid. The TES system behavior was analyzed through 15 consecutive charge/discharge cycles to evaluate the thickness evolution of the thermocline zone, and hence the overall thermal efficiency of the system, under cyclic conditions. The numerical model was satisfactorily validated with experimental data, gathered from a 6.5 MWhth TES system prototype, located in Biasca, designed and built by the Swiss company Airlight Energy SA. The good agreement between CFD simulations results and experimental data allowed the authors to assess the relevance of radiative heat transfer, even at relatively low temperature (300 ÷ 350 °C), on the thermodynamics behavior of the TES system. Moreover, a porosity variation, with the packed bed depth, was also observed numerically and experimentally mainly due to the own weight of the packings (25m3 of natural river pebbles with 3 cm average diameter). The CFD simulations were performed with Fluent code from ANSYS. 8th International Renewable Energy Storage Conference and Exhibition (IRES 2013) Energy Procedia, 46 ISSN:1876-6102
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015Publisher:Swiss Chemical Society Funded by:EC | SFERA-IIEC| SFERA-IILukas Geissbühler; Simone Zavattoni; Maurizio Barbato; Giw Zanganeh; Andreas Haselbacher; Aldo Steinfeld;pmid: 26842333
Combined sensible/latent heat storage allows the heat-transfer fluid outflow temperature during discharging to be stabilized. A lab-scale combined storage consisting of a packed bed of rocks and steel-encapsulated AlSi12 was investigated experimentally and numerically. Due to the small tank-to-particle diameter ratio of the lab-scale storage, void-fraction variations were not negligible, leading to channeling effects that cannot be resolved in 1D heat-transfer models. The void-fraction variations and channeling effects can be resolved in 2D models of the flow and heat transfer in the storage. The resulting so-called bypass fraction extracted from the 2D model was used in the 1D model and led to good agreement with experimental measurements.
CHIMIA International... arrow_drop_down CHIMIA International Journal for ChemistryArticle . 2015 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttp://dx.doi.org/doi.org/10.2...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2533/chimia.2015.799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert CHIMIA International... arrow_drop_down CHIMIA International Journal for ChemistryArticle . 2015 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttp://dx.doi.org/doi.org/10.2...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2533/chimia.2015.799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Simone Zavattoni; Maurizio Barbato; Giw Zanganeh; Andrea Pedretti;AbstractSingle-tank thermal energy storage (TES) systems represent a valuable alternative, to the most common two-tank systems with molten slat, to effectively store thermal energy in concentrating solar power (CSP) applications.From an economic standpoint, the gap between the two TES solutions is relevant. A remarkable cost reduction can be achieved if a single-tank TES system, with a low-cost filler material, is exploited.In this kind of TES system,the buoyancydriven effects of the heat transfer fluid are exploited to establish and maintain a thermocline zone which separates the hot region on top and the cold region at the bottom of the tank.The thinner the thermocline thickness, the higher the thermodynamic quality of the stored energy.As soon as the TES is charged for the first time, i.e. startup of the system, the extent of thermal stratification may vary sharply during the first cycles before achieving a stable condition. For this reason, this study aims at evaluating, by means of accurate time-dependent 3D CFD simulations, the transient evolution of thermal stratification of a single-tank TES system exploited to fulfill the round-the-clock energy requirement of a reference 80 MWeCSP plant which uses air as heat transfer fluid.A total of 30 consecutive cycles, composed by charge/discharge phases, were simulated.Since the thermal energy stored is exploited to produce electrical energy, the performances of the TES system, operating under cyclic conditions, were qualitatively characterized by means of a stratification efficiency indexbased upon the second-law of thermodynamics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014Embargo end date: 01 Jan 2014 SwitzerlandPublisher:Elsevier BV Andreas Haselbacher; Maurizio Barbato; Giw Zanganeh; Aldo Steinfeld; Aldo Steinfeld; Simone Zavattoni; Andrea Pedretti;A thermal energy storage (TES) system was designed based on a packed bed of rocks as storing material and air as heat transfer fluid. A pilot-scale 6.5 MWhth TES unit was built and tested. A dynamic numerical heat transfer and fluid flow model was developed and experimentally validated with measurements obtained from the pilot-scale TES unit. The simulation model is applied to design an industrial-scale 100 MWhth TES unit for a solar power plant currently under construction in Morocco. Proceedings of the SolarPACES 2013 International Conference Energy Procedia, 49 ISSN:1876-6102
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Simone Zavattoni; Andrea Pedretti; Giw Zanganeh; Aldo Steinfeld; Aldo Steinfeld; Maurizio Barbato;A thermal energy storage system, consisting of a packed bed of rocks as storing material and air as high-temperature heat transfer fluid, is analyzed for concentrated solar power (CSP) applications. A 6.5 MWhth pilot-scale thermal storage unit immersed in the ground and of truncated conical shape is fabricated and experimentally demonstrated to generate thermoclines. A dynamic numerical heat transfer model is formulated for separate fluid and solid phases and variable thermo-physical properties in the range of 20–650 °C, and validated with experimental results. The validated model is further applied to design and simulate an array of two industrial-scale thermal storage units, each of 7.2 GWhth capacity, for a 26 MWel round-the-clock concentrated solar power plant during multiple 8 h-charging/16 h-discharging cycles, yielding 95% overall thermal efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2012.07.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu331 citations 331 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2012.07.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Giw Zanganeh; Maurizio Barbato; Simone Zavattoni; Andrea Pedretti;AbstractIn the present work, a computational fluid dynamics (CFD) approach was followed to evaluate the extent of thermal stratification of an industrial-scale thermal energy storage (TES) system, based on a packed bed of river pebbles The TES is integrated into a reference concentrating solar power plant which uses air as heat transfer fluid. The transient evolution of thermal stratification was qualitatively evaluated according to the dimensionless MIX number based on the so-called moment of energy, or height-weighted energy, into the packed bed. The resulting stratification efficiency ranges between 0 and 1 with the theoretical threshold values given by the moment of energy of fully mixed and ideally stratified TES respectively. The 30 consecutive cycles analyzed were characterized by 12hours of charging followed by 12hours of discharging. The results obtained showed that the TES system reached a stable working condition after 20-22 cycles with an average stratification efficiency of about 0.95. The CFD simulations were performed with Fluent 14.5 code from ANSYS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.691&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.691&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Antonio Gaetano; Gianluca Ambrosetti; Simone Zavattoni; Maurizio Barbato; Davide Montorfano; Andrea Pedretti;AbstractThe thermal behavior of the novel CSP receiver based on Airlight Energy technology was analyzed by means of accurate 2D steady-state computational fluid dynamics (CFD) simulations. Afterwards, its thermal insulation design was numerically optimized with the aim of minimizing the heat losses. Energy and radiation transport equations were numerically solved, using the finite-volume method approach, with Fluent code from ANSYS.In this innovative receiver design, air is used as heat transfer fluid (HTF) allowing to go beyond the operating temperature limits of conventional HTFs. However, air receivers need a larger heat transfer area and flow cross-section compared to the most common oil and molten salts receivers. Thus, the insulation becomes technically challenging. Due to a large thermal capacity, the use of conventional insulating material is not the best solution for air-based receivers. Instead, thanks to the advantages offered, thermal radiation shields were selected as main receiver insulation system.The analysis of the CFD simulations results drove the various modifications of the thermal insulation design; hence, a total of three versions were studied achieving, at the end, the final optimized solution which is implemented in the first full-scale 3.9 MWth pilot plant under construction in Ait Baha (Morocco).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Maurizio Barbato; Bruno D'Aguanno; Simone Zavattoni; Iñigo Ortega-Fernández; Javier Rodríguez-Aseguinolaza;Abstract Compressed air energy storage (CAES) represents a very attracting option to grid electric energy storage. Although this technology is mature and well established, its overall electricity-to-electricity cycle efficiency is lower with respect to other alternatives such as pumped hydroelectric energy storage. A meager heat management strategy in the CAES technology is among the main reasons of this gap of efficiency. In current CAES plants, during the compression stage, a large amount of thermal energy is produced and wasted. On the other hand, during the electricity generation stage, an extensive heat supply is required, currently provided by burning natural gas. In this work, the coupling of both CAES stages through a thermal energy storage (TES) unit is introduced as an effective solution to achieve a noticeable increase of the overall CAES cycle efficiency. In this frame, the thermal energy produced in the compression stage is stored in a TES unit for its subsequent deployment during the expansion stage, realizing an Adiabatic-CAES plant. The present study addresses the conceptual design of a TES system based on a packed bed of gravel to be integrated in an Adiabatic-CAES plant. With this objective, a complete thermo-fluid dynamics model has been developed, including the implications derived from the TES operating under variable-pressure conditions. The formulation and treatment of the high pressure conditions were found being particularly relevant issues. Finally, the model provided a detailed performance and efficiency analysis of the TES system under charge/discharge cyclic conditions including a realistic operative scenario. Overall, the results show the high potential of integrating this type of TES systems in a CAES plant.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.07.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.07.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014Embargo end date: 01 Jan 2014 SwitzerlandPublisher:Elsevier BV Authors: Zavattoni, Simone A.; Gaetano, Antonio; Barbato, Maurizio C.; Ambrosetti, Gianluca; +3 AuthorsZavattoni, Simone A.; Gaetano, Antonio; Barbato, Maurizio C.; Ambrosetti, Gianluca; Good, Philipp; Malnati, Fabio; Pedretti, Andrea;The aim of this work was to study, by means of accurate 3D steady-state CFD simulations, the thermo-fluid dynamics behavior of a helically coiled heat exchanger (HCHE) constituting the receiving cavity of the novel CSP receiver based on Airlight Energy technology. In this innovative receiver design, air is used as heat transfer fluid (HTF), which, besides being inexpensive and environmentally friendly, is optimally suited for high temperature operation well beyond the limit of conventional HTFs. According to preliminary information related to the collectors orientation of the first 3.9 MWth Airlight Energy pilot plant, under construction in Ait Baha (Morocco), two reference skew angles of the incoming solar radiation were considered and the receiving cavity performance were evaluated in terms of thermal efficiency and pressure drop. Among all, one of the main requirements was to achieve, at the outlet section of the HCHE, an air temperature of 650 °C; hence the mass flow rate was tuned accordingly. In order to minimize the pumping power requirements, the HCHE was designed to guarantee a laminar flow regime under all the operating conditions. Navier-Stokes, energy and radiation transport equations, the latter accounted for by the Discrete Ordinates (DO) model, were numerically solved, using the finite-volume method approach, with Fluent code from ANSYS. A meticulous experimental proof of concept was then carried out in Biasca (Switzerland) by the Swiss company Airlight Energy Manufacturing SA. The analysis of the experimental results, detailed in this paper, allowed to assess the reliability and effectiveness of this novel CSP receiver design in the solar energy harvesting. Proceedings of the SolarPACES 2013 International Conference Energy Procedia, 49 ISSN:1876-6102
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 01 Jan 2018 SwitzerlandPublisher:Elsevier BV L. Geissbühler; V. Becattini; G. Zanganeh; S. Zavattoni; M. Barbato; A. Haselbacher; A. Steinfeld;Experimental and numerical results from the world's first advanced adiabatic compressed air energy storage (AA-CAES) pilot-scale plant are presented. The plant was built in an unused tunnel with a diameter of 4.9 m in which two concrete plugs delimited a mostly unlined cavern of 120 m length. The sensible thermal-energy storage (TES) with a capacity of 12 MWhth was placed inside the cavern. The pilot plant was operated with charging/discharging cycles of various durations, air temperatures of up to 550 °C, and maximum cavern gauge pressures of 7 bar. Higher pressures could not be reached because of leaks that were traced mainly to the concrete plugs. Simulations using a coupled model of the TES and cavern showed good agreement with measurements. Cycle energy efficiencies of the TES were determined to lie between 76% and 90%. The estimated round-trip efficiency of the pilot plant was based on the measured TES performance and estimated performances of the other components, yielding values of 63–74%, which compares favorably with the usually quoted values of 60–75% for prospective AA-CAES plants. Journal of Energy Storage, 17 ISSN:2352-152X
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2018.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 145 citations 145 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2018.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014Embargo end date: 01 Jan 2014 SwitzerlandPublisher:Elsevier BV Giw Zanganeh; Aldo Steinfeld; Aldo Steinfeld; Maurizio Barbato; Simone Zavattoni; Andrea Pedretti;The present study aims at dimensioning and modeling, by means of accurate time-dependent 3D computational fluid dynamics simulations, the behavior of a high temperature rock-bed TES system. The latter is exploited to fulfill the round-the-clock energy requirements of a reference 80 MWe industrial-scale CSP plant, based upon the Airlight Energy technology, which uses air as heat transfer fluid. The TES system behavior was analyzed through 15 consecutive charge/discharge cycles to evaluate the thickness evolution of the thermocline zone, and hence the overall thermal efficiency of the system, under cyclic conditions. The numerical model was satisfactorily validated with experimental data, gathered from a 6.5 MWhth TES system prototype, located in Biasca, designed and built by the Swiss company Airlight Energy SA. The good agreement between CFD simulations results and experimental data allowed the authors to assess the relevance of radiative heat transfer, even at relatively low temperature (300 ÷ 350 °C), on the thermodynamics behavior of the TES system. Moreover, a porosity variation, with the packed bed depth, was also observed numerically and experimentally mainly due to the own weight of the packings (25m3 of natural river pebbles with 3 cm average diameter). The CFD simulations were performed with Fluent code from ANSYS. 8th International Renewable Energy Storage Conference and Exhibition (IRES 2013) Energy Procedia, 46 ISSN:1876-6102
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015Publisher:Swiss Chemical Society Funded by:EC | SFERA-IIEC| SFERA-IILukas Geissbühler; Simone Zavattoni; Maurizio Barbato; Giw Zanganeh; Andreas Haselbacher; Aldo Steinfeld;pmid: 26842333
Combined sensible/latent heat storage allows the heat-transfer fluid outflow temperature during discharging to be stabilized. A lab-scale combined storage consisting of a packed bed of rocks and steel-encapsulated AlSi12 was investigated experimentally and numerically. Due to the small tank-to-particle diameter ratio of the lab-scale storage, void-fraction variations were not negligible, leading to channeling effects that cannot be resolved in 1D heat-transfer models. The void-fraction variations and channeling effects can be resolved in 2D models of the flow and heat transfer in the storage. The resulting so-called bypass fraction extracted from the 2D model was used in the 1D model and led to good agreement with experimental measurements.
CHIMIA International... arrow_drop_down CHIMIA International Journal for ChemistryArticle . 2015 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttp://dx.doi.org/doi.org/10.2...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2533/chimia.2015.799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert CHIMIA International... arrow_drop_down CHIMIA International Journal for ChemistryArticle . 2015 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttp://dx.doi.org/doi.org/10.2...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2533/chimia.2015.799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Simone Zavattoni; Maurizio Barbato; Giw Zanganeh; Andrea Pedretti;AbstractSingle-tank thermal energy storage (TES) systems represent a valuable alternative, to the most common two-tank systems with molten slat, to effectively store thermal energy in concentrating solar power (CSP) applications.From an economic standpoint, the gap between the two TES solutions is relevant. A remarkable cost reduction can be achieved if a single-tank TES system, with a low-cost filler material, is exploited.In this kind of TES system,the buoyancydriven effects of the heat transfer fluid are exploited to establish and maintain a thermocline zone which separates the hot region on top and the cold region at the bottom of the tank.The thinner the thermocline thickness, the higher the thermodynamic quality of the stored energy.As soon as the TES is charged for the first time, i.e. startup of the system, the extent of thermal stratification may vary sharply during the first cycles before achieving a stable condition. For this reason, this study aims at evaluating, by means of accurate time-dependent 3D CFD simulations, the transient evolution of thermal stratification of a single-tank TES system exploited to fulfill the round-the-clock energy requirement of a reference 80 MWeCSP plant which uses air as heat transfer fluid.A total of 30 consecutive cycles, composed by charge/discharge phases, were simulated.Since the thermal energy stored is exploited to produce electrical energy, the performances of the TES system, operating under cyclic conditions, were qualitatively characterized by means of a stratification efficiency indexbased upon the second-law of thermodynamics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014Embargo end date: 01 Jan 2014 SwitzerlandPublisher:Elsevier BV Andreas Haselbacher; Maurizio Barbato; Giw Zanganeh; Aldo Steinfeld; Aldo Steinfeld; Simone Zavattoni; Andrea Pedretti;A thermal energy storage (TES) system was designed based on a packed bed of rocks as storing material and air as heat transfer fluid. A pilot-scale 6.5 MWhth TES unit was built and tested. A dynamic numerical heat transfer and fluid flow model was developed and experimentally validated with measurements obtained from the pilot-scale TES unit. The simulation model is applied to design an industrial-scale 100 MWhth TES unit for a solar power plant currently under construction in Morocco. Proceedings of the SolarPACES 2013 International Conference Energy Procedia, 49 ISSN:1876-6102
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Simone Zavattoni; Andrea Pedretti; Giw Zanganeh; Aldo Steinfeld; Aldo Steinfeld; Maurizio Barbato;A thermal energy storage system, consisting of a packed bed of rocks as storing material and air as high-temperature heat transfer fluid, is analyzed for concentrated solar power (CSP) applications. A 6.5 MWhth pilot-scale thermal storage unit immersed in the ground and of truncated conical shape is fabricated and experimentally demonstrated to generate thermoclines. A dynamic numerical heat transfer model is formulated for separate fluid and solid phases and variable thermo-physical properties in the range of 20–650 °C, and validated with experimental results. The validated model is further applied to design and simulate an array of two industrial-scale thermal storage units, each of 7.2 GWhth capacity, for a 26 MWel round-the-clock concentrated solar power plant during multiple 8 h-charging/16 h-discharging cycles, yielding 95% overall thermal efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2012.07.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu331 citations 331 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2012.07.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Giw Zanganeh; Maurizio Barbato; Simone Zavattoni; Andrea Pedretti;AbstractIn the present work, a computational fluid dynamics (CFD) approach was followed to evaluate the extent of thermal stratification of an industrial-scale thermal energy storage (TES) system, based on a packed bed of river pebbles The TES is integrated into a reference concentrating solar power plant which uses air as heat transfer fluid. The transient evolution of thermal stratification was qualitatively evaluated according to the dimensionless MIX number based on the so-called moment of energy, or height-weighted energy, into the packed bed. The resulting stratification efficiency ranges between 0 and 1 with the theoretical threshold values given by the moment of energy of fully mixed and ideally stratified TES respectively. The 30 consecutive cycles analyzed were characterized by 12hours of charging followed by 12hours of discharging. The results obtained showed that the TES system reached a stable working condition after 20-22 cycles with an average stratification efficiency of about 0.95. The CFD simulations were performed with Fluent 14.5 code from ANSYS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.691&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.691&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Antonio Gaetano; Gianluca Ambrosetti; Simone Zavattoni; Maurizio Barbato; Davide Montorfano; Andrea Pedretti;AbstractThe thermal behavior of the novel CSP receiver based on Airlight Energy technology was analyzed by means of accurate 2D steady-state computational fluid dynamics (CFD) simulations. Afterwards, its thermal insulation design was numerically optimized with the aim of minimizing the heat losses. Energy and radiation transport equations were numerically solved, using the finite-volume method approach, with Fluent code from ANSYS.In this innovative receiver design, air is used as heat transfer fluid (HTF) allowing to go beyond the operating temperature limits of conventional HTFs. However, air receivers need a larger heat transfer area and flow cross-section compared to the most common oil and molten salts receivers. Thus, the insulation becomes technically challenging. Due to a large thermal capacity, the use of conventional insulating material is not the best solution for air-based receivers. Instead, thanks to the advantages offered, thermal radiation shields were selected as main receiver insulation system.The analysis of the CFD simulations results drove the various modifications of the thermal insulation design; hence, a total of three versions were studied achieving, at the end, the final optimized solution which is implemented in the first full-scale 3.9 MWth pilot plant under construction in Ait Baha (Morocco).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Maurizio Barbato; Bruno D'Aguanno; Simone Zavattoni; Iñigo Ortega-Fernández; Javier Rodríguez-Aseguinolaza;Abstract Compressed air energy storage (CAES) represents a very attracting option to grid electric energy storage. Although this technology is mature and well established, its overall electricity-to-electricity cycle efficiency is lower with respect to other alternatives such as pumped hydroelectric energy storage. A meager heat management strategy in the CAES technology is among the main reasons of this gap of efficiency. In current CAES plants, during the compression stage, a large amount of thermal energy is produced and wasted. On the other hand, during the electricity generation stage, an extensive heat supply is required, currently provided by burning natural gas. In this work, the coupling of both CAES stages through a thermal energy storage (TES) unit is introduced as an effective solution to achieve a noticeable increase of the overall CAES cycle efficiency. In this frame, the thermal energy produced in the compression stage is stored in a TES unit for its subsequent deployment during the expansion stage, realizing an Adiabatic-CAES plant. The present study addresses the conceptual design of a TES system based on a packed bed of gravel to be integrated in an Adiabatic-CAES plant. With this objective, a complete thermo-fluid dynamics model has been developed, including the implications derived from the TES operating under variable-pressure conditions. The formulation and treatment of the high pressure conditions were found being particularly relevant issues. Finally, the model provided a detailed performance and efficiency analysis of the TES system under charge/discharge cyclic conditions including a realistic operative scenario. Overall, the results show the high potential of integrating this type of TES systems in a CAES plant.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.07.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.07.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014Embargo end date: 01 Jan 2014 SwitzerlandPublisher:Elsevier BV Authors: Zavattoni, Simone A.; Gaetano, Antonio; Barbato, Maurizio C.; Ambrosetti, Gianluca; +3 AuthorsZavattoni, Simone A.; Gaetano, Antonio; Barbato, Maurizio C.; Ambrosetti, Gianluca; Good, Philipp; Malnati, Fabio; Pedretti, Andrea;The aim of this work was to study, by means of accurate 3D steady-state CFD simulations, the thermo-fluid dynamics behavior of a helically coiled heat exchanger (HCHE) constituting the receiving cavity of the novel CSP receiver based on Airlight Energy technology. In this innovative receiver design, air is used as heat transfer fluid (HTF), which, besides being inexpensive and environmentally friendly, is optimally suited for high temperature operation well beyond the limit of conventional HTFs. According to preliminary information related to the collectors orientation of the first 3.9 MWth Airlight Energy pilot plant, under construction in Ait Baha (Morocco), two reference skew angles of the incoming solar radiation were considered and the receiving cavity performance were evaluated in terms of thermal efficiency and pressure drop. Among all, one of the main requirements was to achieve, at the outlet section of the HCHE, an air temperature of 650 °C; hence the mass flow rate was tuned accordingly. In order to minimize the pumping power requirements, the HCHE was designed to guarantee a laminar flow regime under all the operating conditions. Navier-Stokes, energy and radiation transport equations, the latter accounted for by the Discrete Ordinates (DO) model, were numerically solved, using the finite-volume method approach, with Fluent code from ANSYS. A meticulous experimental proof of concept was then carried out in Biasca (Switzerland) by the Swiss company Airlight Energy Manufacturing SA. The analysis of the experimental results, detailed in this paper, allowed to assess the reliability and effectiveness of this novel CSP receiver design in the solar energy harvesting. Proceedings of the SolarPACES 2013 International Conference Energy Procedia, 49 ISSN:1876-6102
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu