- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:ARC | Future Fellowships - Gran...ARC| Future Fellowships - Grant ID: FT140100130Authors: Fengji Luo; Gianluca Ranzi; Xibin Wang; Zhao Yang Dong;handle: 2123/21756
Rapid growth of data in smart grids provides great potentials for the utility to discover knowledge of demand side and design proper demand side management schemes to optimize the grid operation. The overloaded data also impose challenges on the data analytics and decision making. This paper introduces the service computing technique into the smart grid, and proposes a personalized electricity retail plan recommender system for residential users. The proposed personalized recommender system (PRS) is based on the collaborative filtering technique. The energy consumption data of users are firstly collected from the smart meter, and then key energy consumption features of the users are extracted and stored into a user knowledge database (UKD), together with the information of their chosen electricity retail plans. For a target user, the recommender system analyzes his/her energy consumption pattern, find users having similar energy consumption patterns with him/her from the UKD, and then recommend most suitable pricing plan to the target user. Experiments are conducted based on actual smart meter data and retail plan data to verify the effectiveness of the proposed PRS.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefThe University of Sydney: Sydney eScholarship RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2017.2732346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefThe University of Sydney: Sydney eScholarship RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2017.2732346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019Publisher:IEEE Yan Xu; Gianluca Ranzi; Fengji Luo; Fangfei Zhang; Zhao Yang Dong;The ever-increasing power demand and more frequent extreme weather results in increasing number of grid outage events. This paper proposes a resilient energy management scheme for a building community prototype installed with community-scale photovoltaic solar panel and Battery Energy Storage System (BESS), aiming to enhance self-power supply capability of the community during the grid outage period. The scheme harnesses the community-scale renewable energy source and Battery Energy Storage System (BESS), and flexibility of building load shifting to maximize a warfare objective, i.e. the sum of served load of all buildings in the community over the grid outage horizon. An optimization algorithm previously proposed by the authors – Natural Aggregation Algorithm (NAA) is applied to solve the energy management model. Simulations are conducted based on the Australian "Smart Grid, Smart City" dataset to validate the effectiveness of the proposed method.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/icpes4...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icpes47639.2019.9105455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/icpes4...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icpes47639.2019.9105455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP200100773Jie Feng; Kai Gao; Yue Jiang; Giulia Ulpiani; Djordje Krajcic; Riccardo Paolini; Gianluca Ranzi; Mattheos Santamouris;handle: 2123/32396
Abstract In the context of global warming, radiative coolers with high solar reflectance and strong emissivity in the atmospheric window can cool the substrate as well as the ambient air. Silica at its nano or micro-scale being randomly dispersed into a uniform transparent polymer can form scalable radiative coolers for large-scale application. Promising cooling performance has been reported for silica-polymers compared with conventional cooling materials, but their performance can be largely influenced by various fabrication parameters. So far, how fabrication parameters influence the emissivity and the cooling performance has not been experimentally demonstrated and the cooling capacity of silica-polymers reported was not substantial compared to other superior radiative coolers. In this work, random silica-polymer has been optimized experimentally. Lab measurement and experimental testing of six fabricated silica-polymers under subtropical and desert climates indicated that due to the complexity of the thermo-radiative balance, high emissivity and strong selectivity are both indispensable in the production of high cooling power. If combined with superior reflectors with higher solar reflectance and especially the emissivity in 8–13 μm enhancing the heat dissipation ability, substantial cooling capacity can be achieved: under the harsh desert climate with average peak solar radiation over 1100 Wm-2, the combination presented sub-ambient temperature of maximum 4.7 °C when air temperature reached its peak and the maximum daytime and night-time sub-ambient temperatures were 12.5 °C and 15.9 °C respectively.
The University of Sy... arrow_drop_down The University of Sydney: Sydney eScholarship RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Sy... arrow_drop_down The University of Sydney: Sydney eScholarship RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP220103881Authors: Zehua Zhao; Fengji Luo; Yu He; Gianluca Ranzi;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Fengji Luo; Gianluca Ranzi; Weicong Kong; Gaoqi Liang; Zhao Yang Dong;handle: 1959.4/unsworks_68131
Residential demand response (DR) is recognized as a promising approach to improve grid energy efficiency and relieve the network stress. Many studies have been conducted to design home energy management systems that directly schedule and control the household appliances. Distinguished from existing works, this article proposes a personalized recommendation system (PRS) to learn energy-efficient household appliance usage experiences from a large scale of residential users, and recommends suitable appliance usage plans to users while taking their lifestyles into account. The proposed system is based on a collaborative filtering recommendation technique. The PRS first classifies a collection of users as “highly responsive users” and “less responsive users” based on their DR degree analysis. Then, for each less responsive user, the PRS infers the user's lifestyle from usage profiles of nonshiftable appliances and finds out users who have similar habits with the target user from the set of highly responsive users. Based on this, the PRS evaluates the lifestyle similarity between the target user and each smart user, aggregates the appliance usage experiences of highly responsive users, and makes appliance-use recommendations to the target user. Experiments based on a residential data simulator “SimHouse” are designed to validate the proposed system.
UNSWorks arrow_drop_down IEEE Transactions on Industrial InformaticsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tii.2020.2983212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down IEEE Transactions on Industrial InformaticsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tii.2020.2983212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP220103881Authors: Yu He; Fengji Luo; Mingyang Sun; Gianluca Ranzi;IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3268633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3268633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP200100773Giulia Ulpiani; Gianluca Ranzi; Kwok Wei Shah; Jie Feng; Mattheos Santamouris;handle: 2123/32394
Abstract Passive daytime radiative cooling represents one of the boldest answers to tackle the future cooling needs of the built environment and to mitigate urban heat island effects. Recent developments in the field targeted sub-ambience with several successful examples. On the other side, heating demands may get exacerbated unless effective countermeasures against overcooling are identified, especially in wintertime or heating-dominated climates. This review aims at collecting state-of-the-art technologies and techniques to dynamically control the heat transfer to and from the radiative emitter and ultimately modulate its cooling capacity. Potential solutions are selected from different applicative fields, including spacecraft thermal control, thermal camouflage and electronics. Environmentally-responsive solutions are analyzed in depth given their perfect match with radiative cooling design requirements. Among them, VO2-tuned Fabry-Perot resonators are given particular emphasis, owing to their proven applicability. Active solutions are presented for completeness, but in less detail. Underlying principles, structural composition and experimental/simulated results are detailed and discussed to identify prominent pathways towards technically and economically effective integration in the built environment.
The University of Sy... arrow_drop_down The University of Sydney: Sydney eScholarship RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.08.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Sy... arrow_drop_down The University of Sydney: Sydney eScholarship RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.08.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV Authors: Ulpiani, Giulia; Ranzi, Gianluca; Feng, Jie; Santamouris, Mattheos;handle: 2123/32395
Abstract Daytime radiative cooling is regarded as the gold promise of future sustainable building energy systems and a breakthrough in the fight against local climate change. Despite the fervid research interest, most literature reports exceptional theoretical performances under ideal, desert-like conditions, but overlooks the cooling impairment that occurs under low atmospheric transparency (cloudy, humid, polluted conditions) and reduced sky access (packed urban contexts). Power recovery and stabilization call for decoupling of incoming and outgoing radiation at equal wavelengths. Enhanced directionality and high-contrast, broadband asymmetric transmission have been recently proposed to expand the applicability of radiative coolers over a wider spectrum of climates, weathers and terrains. This review offers itself as a first, timely synthesis of the current technological arena. Physical principles, materials and designs, collected from a variety of applicative fields, are detailed and discussed in terms of performance and feasibility, to inspire the transition into sustainable building cooling, worldwide. Major grey areas and serious concerns on potential violations of the 2nd law of thermodynamics reinforce the need for experimental demonstrations in future research.
The University of Sy... arrow_drop_down The University of Sydney: Sydney eScholarship RepositoryArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.110990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Sy... arrow_drop_down The University of Sydney: Sydney eScholarship RepositoryArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.110990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type , Article 2016 AustraliaPublisher:IEEE Authors: Luo, Fengji; Ranzi, Gianluca; Wang, Xibin; Dong, Zhao Yang;doi: 10.1109/icss.2016.12
handle: 2123/21761
Driven by the energy crisis and global warming problem, smart grid was proposed in the early 21th century as a solution for the sustainable development of human society. With the two-way communication infrastructure available in smart grids, a current challenge is to interpret and gain knowledge from the collected grid big data to optimize grid operations. Service recommendation techniques provide promising tools to discover knowledge from the grid data, and recommend energy-aware products/services/suggestions to the smart grid participators. This paper is among the first to investigate the prospective of introducing service recommendation techniques into the smart grid demand side management (DSM). In the first part of the paper, the backgrounds of smart grid DSM and service recommendation techniques are reviewed, followed by the presentation and discussion of key technologies that can facilitate the development of smart grid recommender systems. An outline on potential application scenarios of smart grid recommender systems as well as future challenges are also provided.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icss.2016.12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icss.2016.12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Institution of Engineering and Technology (IET) Authors: Zehua Zhao; Fengji Luo; Chunming Zhang; Gianluca Ranzi;doi: 10.1049/rpg2.12349
AbstractIncreasingly prevalence of distributed energy resources (such as solar panels and wind turbines) has been transforming traditional energy consumers to become energy prosumers (producers‐and‐consumers). This in turn drives the development of peer‐to‐peer energy trading, which refers to trading energy generated by distributed energy resources directly among energy prosumers and consumers. This paper proposes a new peer‐to‐peer electricity market prototype that facilitates energy trading among energy prosumers and consumers with consideration of their preferences in terms of social relationships with each other. A data‐driven social network model is established to represent the bilateral social relationships of the market participants. Based on that, an auction‐based electricity trading mechanism is proposed to facilitate the participants to make end‐to‐end energy trading decisions by simultaneously considering energy trading prices and social relationship preferences. Numerical simulations based on real‐world datasets are conducted to validate the proposed system.
IET Renewable Power ... arrow_drop_down IET Renewable Power GenerationArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IET Renewable Power ... arrow_drop_down IET Renewable Power GenerationArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:ARC | Future Fellowships - Gran...ARC| Future Fellowships - Grant ID: FT140100130Authors: Fengji Luo; Gianluca Ranzi; Xibin Wang; Zhao Yang Dong;handle: 2123/21756
Rapid growth of data in smart grids provides great potentials for the utility to discover knowledge of demand side and design proper demand side management schemes to optimize the grid operation. The overloaded data also impose challenges on the data analytics and decision making. This paper introduces the service computing technique into the smart grid, and proposes a personalized electricity retail plan recommender system for residential users. The proposed personalized recommender system (PRS) is based on the collaborative filtering technique. The energy consumption data of users are firstly collected from the smart meter, and then key energy consumption features of the users are extracted and stored into a user knowledge database (UKD), together with the information of their chosen electricity retail plans. For a target user, the recommender system analyzes his/her energy consumption pattern, find users having similar energy consumption patterns with him/her from the UKD, and then recommend most suitable pricing plan to the target user. Experiments are conducted based on actual smart meter data and retail plan data to verify the effectiveness of the proposed PRS.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefThe University of Sydney: Sydney eScholarship RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2017.2732346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefThe University of Sydney: Sydney eScholarship RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2017.2732346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019Publisher:IEEE Yan Xu; Gianluca Ranzi; Fengji Luo; Fangfei Zhang; Zhao Yang Dong;The ever-increasing power demand and more frequent extreme weather results in increasing number of grid outage events. This paper proposes a resilient energy management scheme for a building community prototype installed with community-scale photovoltaic solar panel and Battery Energy Storage System (BESS), aiming to enhance self-power supply capability of the community during the grid outage period. The scheme harnesses the community-scale renewable energy source and Battery Energy Storage System (BESS), and flexibility of building load shifting to maximize a warfare objective, i.e. the sum of served load of all buildings in the community over the grid outage horizon. An optimization algorithm previously proposed by the authors – Natural Aggregation Algorithm (NAA) is applied to solve the energy management model. Simulations are conducted based on the Australian "Smart Grid, Smart City" dataset to validate the effectiveness of the proposed method.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/icpes4...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icpes47639.2019.9105455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/icpes4...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icpes47639.2019.9105455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP200100773Jie Feng; Kai Gao; Yue Jiang; Giulia Ulpiani; Djordje Krajcic; Riccardo Paolini; Gianluca Ranzi; Mattheos Santamouris;handle: 2123/32396
Abstract In the context of global warming, radiative coolers with high solar reflectance and strong emissivity in the atmospheric window can cool the substrate as well as the ambient air. Silica at its nano or micro-scale being randomly dispersed into a uniform transparent polymer can form scalable radiative coolers for large-scale application. Promising cooling performance has been reported for silica-polymers compared with conventional cooling materials, but their performance can be largely influenced by various fabrication parameters. So far, how fabrication parameters influence the emissivity and the cooling performance has not been experimentally demonstrated and the cooling capacity of silica-polymers reported was not substantial compared to other superior radiative coolers. In this work, random silica-polymer has been optimized experimentally. Lab measurement and experimental testing of six fabricated silica-polymers under subtropical and desert climates indicated that due to the complexity of the thermo-radiative balance, high emissivity and strong selectivity are both indispensable in the production of high cooling power. If combined with superior reflectors with higher solar reflectance and especially the emissivity in 8–13 μm enhancing the heat dissipation ability, substantial cooling capacity can be achieved: under the harsh desert climate with average peak solar radiation over 1100 Wm-2, the combination presented sub-ambient temperature of maximum 4.7 °C when air temperature reached its peak and the maximum daytime and night-time sub-ambient temperatures were 12.5 °C and 15.9 °C respectively.
The University of Sy... arrow_drop_down The University of Sydney: Sydney eScholarship RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Sy... arrow_drop_down The University of Sydney: Sydney eScholarship RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP220103881Authors: Zehua Zhao; Fengji Luo; Yu He; Gianluca Ranzi;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Fengji Luo; Gianluca Ranzi; Weicong Kong; Gaoqi Liang; Zhao Yang Dong;handle: 1959.4/unsworks_68131
Residential demand response (DR) is recognized as a promising approach to improve grid energy efficiency and relieve the network stress. Many studies have been conducted to design home energy management systems that directly schedule and control the household appliances. Distinguished from existing works, this article proposes a personalized recommendation system (PRS) to learn energy-efficient household appliance usage experiences from a large scale of residential users, and recommends suitable appliance usage plans to users while taking their lifestyles into account. The proposed system is based on a collaborative filtering recommendation technique. The PRS first classifies a collection of users as “highly responsive users” and “less responsive users” based on their DR degree analysis. Then, for each less responsive user, the PRS infers the user's lifestyle from usage profiles of nonshiftable appliances and finds out users who have similar habits with the target user from the set of highly responsive users. Based on this, the PRS evaluates the lifestyle similarity between the target user and each smart user, aggregates the appliance usage experiences of highly responsive users, and makes appliance-use recommendations to the target user. Experiments based on a residential data simulator “SimHouse” are designed to validate the proposed system.
UNSWorks arrow_drop_down IEEE Transactions on Industrial InformaticsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tii.2020.2983212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down IEEE Transactions on Industrial InformaticsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tii.2020.2983212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP220103881Authors: Yu He; Fengji Luo; Mingyang Sun; Gianluca Ranzi;IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3268633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2023.3268633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP200100773Giulia Ulpiani; Gianluca Ranzi; Kwok Wei Shah; Jie Feng; Mattheos Santamouris;handle: 2123/32394
Abstract Passive daytime radiative cooling represents one of the boldest answers to tackle the future cooling needs of the built environment and to mitigate urban heat island effects. Recent developments in the field targeted sub-ambience with several successful examples. On the other side, heating demands may get exacerbated unless effective countermeasures against overcooling are identified, especially in wintertime or heating-dominated climates. This review aims at collecting state-of-the-art technologies and techniques to dynamically control the heat transfer to and from the radiative emitter and ultimately modulate its cooling capacity. Potential solutions are selected from different applicative fields, including spacecraft thermal control, thermal camouflage and electronics. Environmentally-responsive solutions are analyzed in depth given their perfect match with radiative cooling design requirements. Among them, VO2-tuned Fabry-Perot resonators are given particular emphasis, owing to their proven applicability. Active solutions are presented for completeness, but in less detail. Underlying principles, structural composition and experimental/simulated results are detailed and discussed to identify prominent pathways towards technically and economically effective integration in the built environment.
The University of Sy... arrow_drop_down The University of Sydney: Sydney eScholarship RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.08.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Sy... arrow_drop_down The University of Sydney: Sydney eScholarship RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.08.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV Authors: Ulpiani, Giulia; Ranzi, Gianluca; Feng, Jie; Santamouris, Mattheos;handle: 2123/32395
Abstract Daytime radiative cooling is regarded as the gold promise of future sustainable building energy systems and a breakthrough in the fight against local climate change. Despite the fervid research interest, most literature reports exceptional theoretical performances under ideal, desert-like conditions, but overlooks the cooling impairment that occurs under low atmospheric transparency (cloudy, humid, polluted conditions) and reduced sky access (packed urban contexts). Power recovery and stabilization call for decoupling of incoming and outgoing radiation at equal wavelengths. Enhanced directionality and high-contrast, broadband asymmetric transmission have been recently proposed to expand the applicability of radiative coolers over a wider spectrum of climates, weathers and terrains. This review offers itself as a first, timely synthesis of the current technological arena. Physical principles, materials and designs, collected from a variety of applicative fields, are detailed and discussed in terms of performance and feasibility, to inspire the transition into sustainable building cooling, worldwide. Major grey areas and serious concerns on potential violations of the 2nd law of thermodynamics reinforce the need for experimental demonstrations in future research.
The University of Sy... arrow_drop_down The University of Sydney: Sydney eScholarship RepositoryArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.110990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Sy... arrow_drop_down The University of Sydney: Sydney eScholarship RepositoryArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.110990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type , Article 2016 AustraliaPublisher:IEEE Authors: Luo, Fengji; Ranzi, Gianluca; Wang, Xibin; Dong, Zhao Yang;doi: 10.1109/icss.2016.12
handle: 2123/21761
Driven by the energy crisis and global warming problem, smart grid was proposed in the early 21th century as a solution for the sustainable development of human society. With the two-way communication infrastructure available in smart grids, a current challenge is to interpret and gain knowledge from the collected grid big data to optimize grid operations. Service recommendation techniques provide promising tools to discover knowledge from the grid data, and recommend energy-aware products/services/suggestions to the smart grid participators. This paper is among the first to investigate the prospective of introducing service recommendation techniques into the smart grid demand side management (DSM). In the first part of the paper, the backgrounds of smart grid DSM and service recommendation techniques are reviewed, followed by the presentation and discussion of key technologies that can facilitate the development of smart grid recommender systems. An outline on potential application scenarios of smart grid recommender systems as well as future challenges are also provided.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icss.2016.12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icss.2016.12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Institution of Engineering and Technology (IET) Authors: Zehua Zhao; Fengji Luo; Chunming Zhang; Gianluca Ranzi;doi: 10.1049/rpg2.12349
AbstractIncreasingly prevalence of distributed energy resources (such as solar panels and wind turbines) has been transforming traditional energy consumers to become energy prosumers (producers‐and‐consumers). This in turn drives the development of peer‐to‐peer energy trading, which refers to trading energy generated by distributed energy resources directly among energy prosumers and consumers. This paper proposes a new peer‐to‐peer electricity market prototype that facilitates energy trading among energy prosumers and consumers with consideration of their preferences in terms of social relationships with each other. A data‐driven social network model is established to represent the bilateral social relationships of the market participants. Based on that, an auction‐based electricity trading mechanism is proposed to facilitate the participants to make end‐to‐end energy trading decisions by simultaneously considering energy trading prices and social relationship preferences. Numerical simulations based on real‐world datasets are conducted to validate the proposed system.
IET Renewable Power ... arrow_drop_down IET Renewable Power GenerationArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IET Renewable Power ... arrow_drop_down IET Renewable Power GenerationArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu