- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United StatesPublisher:IOP Publishing Scott L Stephens; Sally Thompson; Gabrielle Boisramé; Brandon M Collins; Lauren C Ponisio; Ekaterina Rakhmatulina; Zachary L Steel; Jens T Stevens; Jan W van Wagtendonk; Kate Wilkin;Abstract Reducing the risk of large, severe wildfires while also increasing the security of mountain water supplies and enhancing biodiversity are urgent priorities in western US forests. After a century of fire suppression, Yosemite and Sequoia-Kings Canyon National Parks located in California’s Sierra Nevada initiated programs to manage wildfires and these areas present a rare opportunity to study the effects of restored fire regimes. Forest cover decreased during the managed wildfire period and meadow and shrubland cover increased, especially in Yosemite’s Illilouette Creek basin that experienced a 20% reduction in forest area. These areas now support greater pyrodiversity and consequently greater landscape and species diversity. Soil moisture increased and drought-induced tree mortality decreased, especially in Illilouette where wildfires have been allowed to burn more freely resulting in a 30% increase in summer soil moisture. Modeling suggests that the ecohydrological co-benefits of restoring fire regimes are robust to the projected climatic warming. Support will be needed from the highest levels of government and the public to maintain existing programs and expand them to other forested areas.
San José State Unive... arrow_drop_down San José State University ScholarWorksArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research CommunicationsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7620/ac17e2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert San José State Unive... arrow_drop_down San José State University ScholarWorksArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research CommunicationsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7620/ac17e2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United StatesPublisher:IOP Publishing Scott L Stephens; Sally Thompson; Gabrielle Boisramé; Brandon M Collins; Lauren C Ponisio; Ekaterina Rakhmatulina; Zachary L Steel; Jens T Stevens; Jan W van Wagtendonk; Kate Wilkin;Abstract Reducing the risk of large, severe wildfires while also increasing the security of mountain water supplies and enhancing biodiversity are urgent priorities in western US forests. After a century of fire suppression, Yosemite and Sequoia-Kings Canyon National Parks located in California’s Sierra Nevada initiated programs to manage wildfires and these areas present a rare opportunity to study the effects of restored fire regimes. Forest cover decreased during the managed wildfire period and meadow and shrubland cover increased, especially in Yosemite’s Illilouette Creek basin that experienced a 20% reduction in forest area. These areas now support greater pyrodiversity and consequently greater landscape and species diversity. Soil moisture increased and drought-induced tree mortality decreased, especially in Illilouette where wildfires have been allowed to burn more freely resulting in a 30% increase in summer soil moisture. Modeling suggests that the ecohydrological co-benefits of restoring fire regimes are robust to the projected climatic warming. Support will be needed from the highest levels of government and the public to maintain existing programs and expand them to other forested areas.
San José State Unive... arrow_drop_down San José State University ScholarWorksArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research CommunicationsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7620/ac17e2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert San José State Unive... arrow_drop_down San José State University ScholarWorksArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research CommunicationsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7620/ac17e2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Proceedings of the National Academy of Sciences Funded by:NSF | Graduate Research Fellows..., NSF | Graduate Research Fellows..., NSF | The Eel River Critical Zo...NSF| Graduate Research Fellowship Program ,NSF| Graduate Research Fellowship Program (GRFP) ,NSF| The Eel River Critical Zone Observatory: exploring how the critical zone will mediate watershed currencies and ecosystem response in a changing environmentStephanie M. Carlson; Kasey C. Pregler; Mariska Obedzinski; Sean P. Gallagher; Suzanne J. Rhoades; Cleo Woelfle-Hazard; Nathan Queener; Sally E. Thompson; Mary E. Power;Climate change is redistributing life on Earth, with profound impacts for ecosystems and human well-being. While repeat surveys separated by multidecadal intervals can determine whether observed shifts are in the expected direction (e.g., poleward or upslope due to climate change), they do not reveal their mechanisms or time scales: whether they were gradual responses to environmental trends or punctuated responses to disturbance events. Here, we document population reductions and temporary range contractions at multiple sites resulting from drought for three Pacific salmonids at their ranges’ trailing edge. During California’s 2012 to 2016 historic multiyear drought, the 2013 to 2014 winter stood apart because rainfall was both reduced and delayed. Extremely low river flows during the breeding season (“flow–phenology mismatch”) reduced or precluded access to breeding habitat. While Chinook ( Oncorhynchus tshawytscha) experienced a down-river range shift, entire cohorts failed in individual tributaries (steelhead trout, O. mykiss ) and in entire watersheds (coho salmon, O. kisutch) . Salmonids returned to impacted sites in subsequent years, rescued by reserves in the ocean, life history diversity, and, in one case, a conservation broodstock program. Large population losses can, however, leave trailing-edge populations vulnerable to extinction due to demographic stochasticity, making permanent range contraction more likely. When only a few large storms occur during high flow season, the timing of particular storms plays an outsized role in determining which migratory fish species are able to access their riverine breeding grounds and persist.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2415670122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2415670122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Proceedings of the National Academy of Sciences Funded by:NSF | Graduate Research Fellows..., NSF | Graduate Research Fellows..., NSF | The Eel River Critical Zo...NSF| Graduate Research Fellowship Program ,NSF| Graduate Research Fellowship Program (GRFP) ,NSF| The Eel River Critical Zone Observatory: exploring how the critical zone will mediate watershed currencies and ecosystem response in a changing environmentStephanie M. Carlson; Kasey C. Pregler; Mariska Obedzinski; Sean P. Gallagher; Suzanne J. Rhoades; Cleo Woelfle-Hazard; Nathan Queener; Sally E. Thompson; Mary E. Power;Climate change is redistributing life on Earth, with profound impacts for ecosystems and human well-being. While repeat surveys separated by multidecadal intervals can determine whether observed shifts are in the expected direction (e.g., poleward or upslope due to climate change), they do not reveal their mechanisms or time scales: whether they were gradual responses to environmental trends or punctuated responses to disturbance events. Here, we document population reductions and temporary range contractions at multiple sites resulting from drought for three Pacific salmonids at their ranges’ trailing edge. During California’s 2012 to 2016 historic multiyear drought, the 2013 to 2014 winter stood apart because rainfall was both reduced and delayed. Extremely low river flows during the breeding season (“flow–phenology mismatch”) reduced or precluded access to breeding habitat. While Chinook ( Oncorhynchus tshawytscha) experienced a down-river range shift, entire cohorts failed in individual tributaries (steelhead trout, O. mykiss ) and in entire watersheds (coho salmon, O. kisutch) . Salmonids returned to impacted sites in subsequent years, rescued by reserves in the ocean, life history diversity, and, in one case, a conservation broodstock program. Large population losses can, however, leave trailing-edge populations vulnerable to extinction due to demographic stochasticity, making permanent range contraction more likely. When only a few large storms occur during high flow season, the timing of particular storms plays an outsized role in determining which migratory fish species are able to access their riverine breeding grounds and persist.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2415670122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2415670122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:Elsevier BV Simone Gelsinari; Sarah Bourke; James McCallum; Don McFarlane; Joel Hall; Richard Silberstein; Sally Thompson;The response of groundwater recharge to climate change needs to be understood to enable sustainable management of groundwater systems today and in the future, yet observations of recharge over long-enough time periods to reveal responses to climate trends are scarce. Here we present a meta-analysis of 60 years of recharge studies over the Gnangara Groundwater System of South-West Western Australia, covering a period of sustained drying consistent with climate change projections. The recharge process in the area is defined by a wet winter during which rain saturates a deep, highly permeable soil profile with very low water storage capacity. Measurements of recharge since the 1960s show near-linear reductions in potential recharge of 50%, in response to a 20% reduction in rainfall. For the best-represented land cover in the dataset (Banksia woodland), the reduction in potential recharge was closer to 70%. A simple analytical model suggests that reductions in the duration of winter, coupled with a decreased frequency of winter storms, were most responsible for these declines, and reveals the potential for nonlinear relationships between the recharge fraction (recharge/precipitation) and climatic variables such as mean storm frequency, mean storm depth, and the length of the winter wet season. Overall, results suggest that recharge declines in drying Mediterranean groundwater systems are likely to outstrip the declines in rainfall, and that leveraging existing observation networks worldwide to characterise recharge responses to changing climate is needed to overcome existing interpretation challenges created by inconsistent sites, methods and durations of recharge estimation.
Journal of Hydrology arrow_drop_down Edith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2024.131007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Hydrology arrow_drop_down Edith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2024.131007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:Elsevier BV Simone Gelsinari; Sarah Bourke; James McCallum; Don McFarlane; Joel Hall; Richard Silberstein; Sally Thompson;The response of groundwater recharge to climate change needs to be understood to enable sustainable management of groundwater systems today and in the future, yet observations of recharge over long-enough time periods to reveal responses to climate trends are scarce. Here we present a meta-analysis of 60 years of recharge studies over the Gnangara Groundwater System of South-West Western Australia, covering a period of sustained drying consistent with climate change projections. The recharge process in the area is defined by a wet winter during which rain saturates a deep, highly permeable soil profile with very low water storage capacity. Measurements of recharge since the 1960s show near-linear reductions in potential recharge of 50%, in response to a 20% reduction in rainfall. For the best-represented land cover in the dataset (Banksia woodland), the reduction in potential recharge was closer to 70%. A simple analytical model suggests that reductions in the duration of winter, coupled with a decreased frequency of winter storms, were most responsible for these declines, and reveals the potential for nonlinear relationships between the recharge fraction (recharge/precipitation) and climatic variables such as mean storm frequency, mean storm depth, and the length of the winter wet season. Overall, results suggest that recharge declines in drying Mediterranean groundwater systems are likely to outstrip the declines in rainfall, and that leveraging existing observation networks worldwide to characterise recharge responses to changing climate is needed to overcome existing interpretation challenges created by inconsistent sites, methods and durations of recharge estimation.
Journal of Hydrology arrow_drop_down Edith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2024.131007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Hydrology arrow_drop_down Edith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2024.131007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Australia, United KingdomPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., ARC | Discovery Projects - Gran..., ARC | Discovery Early Career Re... +3 projectsARC| Discovery Early Career Researcher Award - Grant ID: DE190101182 ,ARC| Discovery Projects - Grant ID: DP190101823 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE210101654 ,ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE200100086 ,ARC| Australian Laureate Fellowships - Grant ID: FL190100003Jason Beringer; Caitlin E. Moore; Jamie Cleverly; David I. Campbell; Helen Cleugh; Martin G. De Kauwe; Miko U. F. Kirschbaum; Anne Griebel; Sam Grover; Alfredo Huete; Lindsay B. Hutley; Johannes Laubach; Tom Van Niel; Stefan K. Arndt; Alison C. Bennett; Lucas A. Cernusak; Derek Eamus; Cacilia M. Ewenz; Jordan P. Goodrich; Mingkai Jiang; Nina Hinko‐Najera; Peter Isaac; Sanaa Hobeichi; Jürgen Knauer; Georgia R. Koerber; Michael Liddell; Xuanlong Ma; Craig Macfarlane; Ian D. McHugh; Belinda E. Medlyn; Wayne S. Meyer; Alexander J. Norton; Jyoteshna Owens; Andy Pitman; Elise Pendall; Suzanne M. Prober; Ram L. Ray; Natalia Restrepo‐Coupe; Sami W. Rifai; David Rowlings; Louis Schipper; Richard P. Silberstein; Lina Teckentrup; Sally E. Thompson; Anna M. Ukkola; Aaron Wall; Ying‐Ping Wang; Tim J. Wardlaw; William Woodgate;AbstractIn 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those ‘next users’ of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under‐represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long‐term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.
University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1111/gcb.16141Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/308572Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1111/gcb.16141Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/308572Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Australia, United KingdomPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., ARC | Discovery Projects - Gran..., ARC | Discovery Early Career Re... +3 projectsARC| Discovery Early Career Researcher Award - Grant ID: DE190101182 ,ARC| Discovery Projects - Grant ID: DP190101823 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE210101654 ,ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE200100086 ,ARC| Australian Laureate Fellowships - Grant ID: FL190100003Jason Beringer; Caitlin E. Moore; Jamie Cleverly; David I. Campbell; Helen Cleugh; Martin G. De Kauwe; Miko U. F. Kirschbaum; Anne Griebel; Sam Grover; Alfredo Huete; Lindsay B. Hutley; Johannes Laubach; Tom Van Niel; Stefan K. Arndt; Alison C. Bennett; Lucas A. Cernusak; Derek Eamus; Cacilia M. Ewenz; Jordan P. Goodrich; Mingkai Jiang; Nina Hinko‐Najera; Peter Isaac; Sanaa Hobeichi; Jürgen Knauer; Georgia R. Koerber; Michael Liddell; Xuanlong Ma; Craig Macfarlane; Ian D. McHugh; Belinda E. Medlyn; Wayne S. Meyer; Alexander J. Norton; Jyoteshna Owens; Andy Pitman; Elise Pendall; Suzanne M. Prober; Ram L. Ray; Natalia Restrepo‐Coupe; Sami W. Rifai; David Rowlings; Louis Schipper; Richard P. Silberstein; Lina Teckentrup; Sally E. Thompson; Anna M. Ukkola; Aaron Wall; Ying‐Ping Wang; Tim J. Wardlaw; William Woodgate;AbstractIn 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those ‘next users’ of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under‐represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long‐term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.
University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1111/gcb.16141Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/308572Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1111/gcb.16141Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/308572Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Elsevier BV Funded by:SNSF | Addressing the water-ener...SNSF| Addressing the water-energy nexus in developing countries - a remote sensing feasibility assessment of in-line hydropower in NepalAuthors: Müller, Marc F; Thompson, Sally E; Gadgil, Ashok J;Community-scale power infrastructure may be the only electrification option for tens of millions households that remain out of reach from centralized power grids. The responsiveness of household electricity demand to price is a crucial design input for off-grid systems. While the price elasticity of electricity demand of grid-connected consumers has been abundantly studied, few studies focus on off-grid communities where substantial econometric challenges arise, including the absence of metered consumption data and electricity prices that are simultaneously determined by cost and demand considerations. This study attempts to address these challenges for the case of off-grid micro hydropower consumers. It makes two core contributions: First, we propose the surface area of the contributing hydrologic catchment as a new instrumental variable to estimate elasticity using a cross sectional dataset of existing micro hydropower infrastructure. Second, we provide a first price-elasticity estimate (−0.15) for off-grid electricity demand in Nepal. We surmise that the small (in absolute value) elasticity value found in this study arises from the low levels of consumption observed off-the-grid. We use a Monte Carlo analysis to show that failing to account for this disparity can lead to substantial financial losses caused by suboptimal power infrastructure design. Keywords: Rural electrification, Instrumental variable, Unmetered connection, Micro hydropower, Nepal
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/64d537cpData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.deveng.2017.12.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/64d537cpData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.deveng.2017.12.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Elsevier BV Funded by:SNSF | Addressing the water-ener...SNSF| Addressing the water-energy nexus in developing countries - a remote sensing feasibility assessment of in-line hydropower in NepalAuthors: Müller, Marc F; Thompson, Sally E; Gadgil, Ashok J;Community-scale power infrastructure may be the only electrification option for tens of millions households that remain out of reach from centralized power grids. The responsiveness of household electricity demand to price is a crucial design input for off-grid systems. While the price elasticity of electricity demand of grid-connected consumers has been abundantly studied, few studies focus on off-grid communities where substantial econometric challenges arise, including the absence of metered consumption data and electricity prices that are simultaneously determined by cost and demand considerations. This study attempts to address these challenges for the case of off-grid micro hydropower consumers. It makes two core contributions: First, we propose the surface area of the contributing hydrologic catchment as a new instrumental variable to estimate elasticity using a cross sectional dataset of existing micro hydropower infrastructure. Second, we provide a first price-elasticity estimate (−0.15) for off-grid electricity demand in Nepal. We surmise that the small (in absolute value) elasticity value found in this study arises from the low levels of consumption observed off-the-grid. We use a Monte Carlo analysis to show that failing to account for this disparity can lead to substantial financial losses caused by suboptimal power infrastructure design. Keywords: Rural electrification, Instrumental variable, Unmetered connection, Micro hydropower, Nepal
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/64d537cpData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.deveng.2017.12.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/64d537cpData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.deveng.2017.12.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United StatesPublisher:Public Library of Science (PLoS) Funded by:NSF | Graduate Research Fellows...NSF| Graduate Research Fellowship ProgramAuthors: Karst, Nathaniel; Dralle, David; Thompson, Sally;A broad class of soil fungi form the annular patterns known as 'fairy rings' and provide one of the only means to observe spatio-temporal dynamics of otherwise cryptic fungal growth processes in natural environments. We present observations of novel spiral and rotor patterns produced by fairy ring fungi and explain these behaviors mathematically by first showing that a well known model of fairy ring fungal growth and the Gray-Scott reaction-diffusion model are mathematically equivalent. We then use bifurcation analysis and numerical simulations to identify the conditions under which spiral waves and rotors can arise. We demonstrate that the region of dimensionless parameter space supporting these more complex dynamics is adjacent to that which produces the more familiar fairy rings, and identify experimental manipulations to test the transitions between these spatial modes. These same manipulations could also feasibly induce fungal colonies to transition from rotor/spiral formation to a set of richer, as yet unobserved, spatial patterns.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/54n86702Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0149254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/54n86702Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0149254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United StatesPublisher:Public Library of Science (PLoS) Funded by:NSF | Graduate Research Fellows...NSF| Graduate Research Fellowship ProgramAuthors: Karst, Nathaniel; Dralle, David; Thompson, Sally;A broad class of soil fungi form the annular patterns known as 'fairy rings' and provide one of the only means to observe spatio-temporal dynamics of otherwise cryptic fungal growth processes in natural environments. We present observations of novel spiral and rotor patterns produced by fairy ring fungi and explain these behaviors mathematically by first showing that a well known model of fairy ring fungal growth and the Gray-Scott reaction-diffusion model are mathematically equivalent. We then use bifurcation analysis and numerical simulations to identify the conditions under which spiral waves and rotors can arise. We demonstrate that the region of dimensionless parameter space supporting these more complex dynamics is adjacent to that which produces the more familiar fairy rings, and identify experimental manipulations to test the transitions between these spatial modes. These same manipulations could also feasibly induce fungal colonies to transition from rotor/spiral formation to a set of richer, as yet unobserved, spatial patterns.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/54n86702Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0149254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/54n86702Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0149254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:American Geophysical Union (AGU) Laurel G. Larsen; A. V. Lopes; Sally E. Thompson; Avery S. Cohn; Morgan C. Levy; Morgan C. Levy;doi: 10.1002/2017gl076526
AbstractNearly half of recent decades' global forest loss occurred in the Amazon and Cerrado (tropical savanna) biomes of Brazil, known as the arc of deforestation. Despite prior analysis in individual river basins, a generalizable empirical understanding of the effect of deforestation on streamflow across this region is lacking. We frame land use change in Brazil as a natural experiment and draw on in situ and remote sensing evidence in 324 river basins covering more than 3 × 106 km2 to estimate streamflow changes caused by deforestation and agricultural development between 1950 and 2013. Deforestation increased dry season low flow by between 4 and 10 percentage points (relative to the forested condition), corresponding to a regional‐ and time‐averaged rate of increase in specific streamflow of 1.29 mm/year2, equivalent to a 4.08 km3/year2 increase, assuming a stationary climate. In conjunction with rainfall and temperature variations, the net (observed) average increase in streamflow over the same period was 0.76 mm/year2, or 2.41 km3/year2. Thus, net increases in regional streamflow in the past half century are 58% of those that would have been experienced with deforestation given a stationary climate. This study uses a causal empirical analysis approach novel to the water sciences to verify the regional applicability of prior basin‐scale studies, provides a proof of concept for the use of observational causal identification methods in the water sciences, and demonstrates that deforestation masks the streamflow‐reducing effects of climate change in this region.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gl076526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gl076526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:American Geophysical Union (AGU) Laurel G. Larsen; A. V. Lopes; Sally E. Thompson; Avery S. Cohn; Morgan C. Levy; Morgan C. Levy;doi: 10.1002/2017gl076526
AbstractNearly half of recent decades' global forest loss occurred in the Amazon and Cerrado (tropical savanna) biomes of Brazil, known as the arc of deforestation. Despite prior analysis in individual river basins, a generalizable empirical understanding of the effect of deforestation on streamflow across this region is lacking. We frame land use change in Brazil as a natural experiment and draw on in situ and remote sensing evidence in 324 river basins covering more than 3 × 106 km2 to estimate streamflow changes caused by deforestation and agricultural development between 1950 and 2013. Deforestation increased dry season low flow by between 4 and 10 percentage points (relative to the forested condition), corresponding to a regional‐ and time‐averaged rate of increase in specific streamflow of 1.29 mm/year2, equivalent to a 4.08 km3/year2 increase, assuming a stationary climate. In conjunction with rainfall and temperature variations, the net (observed) average increase in streamflow over the same period was 0.76 mm/year2, or 2.41 km3/year2. Thus, net increases in regional streamflow in the past half century are 58% of those that would have been experienced with deforestation given a stationary climate. This study uses a causal empirical analysis approach novel to the water sciences to verify the regional applicability of prior basin‐scale studies, provides a proof of concept for the use of observational causal identification methods in the water sciences, and demonstrates that deforestation masks the streamflow‐reducing effects of climate change in this region.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gl076526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gl076526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United StatesPublisher:Elsevier BV Funded by:SNSF | Addressing the water-ener...SNSF| Addressing the water-energy nexus in developing countries - a remote sensing feasibility assessment of in-line hydropower in NepalAuthors: Müller, Marc F; Thompson, Sally E;Abstract Estimating precipitation over large spatial areas remains a challenging problem for hydrologists. Sparse ground-based gauge networks do not provide a robust basis for interpolation, and the reliability of remote sensing products, although improving, is still imperfect. Current techniques to estimate precipitation rely on combining these different kinds of measurements to correct the bias in the satellite observations. We propose a novel procedure that, unlike existing techniques, (i) allows correcting the possibly confounding effects of different sources of errors in satellite estimates, (ii) explicitly accounts for the spatial heterogeneity of the biases and (iii) allows the use of non overlapping historical observations. The proposed method spatially aggregates and interpolates gauge data at the satellite grid resolution by focusing on parameters that describe the frequency and intensity of the rainfall observed at the gauges. The resulting gridded parameters can then be used to adjust the probability density function of satellite rainfall observations at each grid cell, accounting for spatial heterogeneity. Unlike alternate methods, we explicitly adjust biases on rainfall frequency in addition to its intensity. Adjusted rainfall distributions can then readily be applied as input in stochastic rainfall generators or frequency domain hydrological models. Finally, we also provide a procedure to use them to correct remotely sensed rainfall time series. We apply the method to adjust the distributions of daily rainfall observed by the TRMM satellite in Nepal, which exemplifies the challenges associated with a sparse gauge network and large biases due to complex topography. In a cross-validation analysis on daily rainfall from TRMM 3B42 v6, we find that using a small subset of the available gauges, the proposed method outperforms local rainfall estimations using the complete network of available gauges to directly interpolate local rainfall or correct TRMM by adjusting monthly means. We conclude that the proposed frequency-domain bias correction approach is robust and reliable compared to other bias correction approaches.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2013Full-Text: https://escholarship.org/uc/item/1qs1j61kData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaAdvances in Water ResourcesArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2013.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2013Full-Text: https://escholarship.org/uc/item/1qs1j61kData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaAdvances in Water ResourcesArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2013.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United StatesPublisher:Elsevier BV Funded by:SNSF | Addressing the water-ener...SNSF| Addressing the water-energy nexus in developing countries - a remote sensing feasibility assessment of in-line hydropower in NepalAuthors: Müller, Marc F; Thompson, Sally E;Abstract Estimating precipitation over large spatial areas remains a challenging problem for hydrologists. Sparse ground-based gauge networks do not provide a robust basis for interpolation, and the reliability of remote sensing products, although improving, is still imperfect. Current techniques to estimate precipitation rely on combining these different kinds of measurements to correct the bias in the satellite observations. We propose a novel procedure that, unlike existing techniques, (i) allows correcting the possibly confounding effects of different sources of errors in satellite estimates, (ii) explicitly accounts for the spatial heterogeneity of the biases and (iii) allows the use of non overlapping historical observations. The proposed method spatially aggregates and interpolates gauge data at the satellite grid resolution by focusing on parameters that describe the frequency and intensity of the rainfall observed at the gauges. The resulting gridded parameters can then be used to adjust the probability density function of satellite rainfall observations at each grid cell, accounting for spatial heterogeneity. Unlike alternate methods, we explicitly adjust biases on rainfall frequency in addition to its intensity. Adjusted rainfall distributions can then readily be applied as input in stochastic rainfall generators or frequency domain hydrological models. Finally, we also provide a procedure to use them to correct remotely sensed rainfall time series. We apply the method to adjust the distributions of daily rainfall observed by the TRMM satellite in Nepal, which exemplifies the challenges associated with a sparse gauge network and large biases due to complex topography. In a cross-validation analysis on daily rainfall from TRMM 3B42 v6, we find that using a small subset of the available gauges, the proposed method outperforms local rainfall estimations using the complete network of available gauges to directly interpolate local rainfall or correct TRMM by adjusting monthly means. We conclude that the proposed frequency-domain bias correction approach is robust and reliable compared to other bias correction approaches.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2013Full-Text: https://escholarship.org/uc/item/1qs1j61kData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaAdvances in Water ResourcesArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2013.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2013Full-Text: https://escholarship.org/uc/item/1qs1j61kData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaAdvances in Water ResourcesArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2013.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Elsevier BV Funded by:SNSF | Mapping the economic pote...SNSF| Mapping the economic potential for combined micro-hydropower and water supply infrastructure in developing countriesAuthors: Müller, Marc F; Thompson, Sally E; Kelly, Maggi N;Rural electrification in developing countries is often hampered by major information gaps between local communities and urban centers, where technical expertise and funding are concentrated. The tool presented in this paper addresses these gaps to support the implementation of off-grid micro hydropower infrastructure. Specifically, we present a method to site, size and evaluate the potential for micro hydropower based on remote sensing data. The method improves on previous approaches by (i) incorporating the effect of hillslope topography on the optimal layout of the infrastructure, and (ii) accounting for the constraints imposed by streamflow variability and local electricity demand on the optimal size of the plants. An assessment of the method’s performance against 148 existing schemes indicates that it correctly identifies the most promising locations for hydropower in Nepal, but does not generally reproduce the specific design features of constructed plants, which are affected by site-specific constraints. We develop a proof-of-concept computer tool to explore the potential of webGIS technology to account for these constraints by collecting site-specific information from local users.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/4wq161v2Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.03.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/4wq161v2Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.03.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Elsevier BV Funded by:SNSF | Mapping the economic pote...SNSF| Mapping the economic potential for combined micro-hydropower and water supply infrastructure in developing countriesAuthors: Müller, Marc F; Thompson, Sally E; Kelly, Maggi N;Rural electrification in developing countries is often hampered by major information gaps between local communities and urban centers, where technical expertise and funding are concentrated. The tool presented in this paper addresses these gaps to support the implementation of off-grid micro hydropower infrastructure. Specifically, we present a method to site, size and evaluate the potential for micro hydropower based on remote sensing data. The method improves on previous approaches by (i) incorporating the effect of hillslope topography on the optimal layout of the infrastructure, and (ii) accounting for the constraints imposed by streamflow variability and local electricity demand on the optimal size of the plants. An assessment of the method’s performance against 148 existing schemes indicates that it correctly identifies the most promising locations for hydropower in Nepal, but does not generally reproduce the specific design features of constructed plants, which are affected by site-specific constraints. We develop a proof-of-concept computer tool to explore the potential of webGIS technology to account for these constraints by collecting site-specific information from local users.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/4wq161v2Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.03.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/4wq161v2Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.03.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Wiley Blair C. McLaughlin; David D. Ackerly; P. Zion Klos; Jennifer Natali; Todd E. Dawson; Sally E. Thompson;doi: 10.1111/gcb.13629
pmid: 28318131
AbstractClimate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability – mesic microenvironments – are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species‐specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate‐cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/4p20j97tData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 292 citations 292 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/4p20j97tData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Wiley Blair C. McLaughlin; David D. Ackerly; P. Zion Klos; Jennifer Natali; Todd E. Dawson; Sally E. Thompson;doi: 10.1111/gcb.13629
pmid: 28318131
AbstractClimate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability – mesic microenvironments – are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species‐specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate‐cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/4p20j97tData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 292 citations 292 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/4p20j97tData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United StatesPublisher:IOP Publishing Scott L Stephens; Sally Thompson; Gabrielle Boisramé; Brandon M Collins; Lauren C Ponisio; Ekaterina Rakhmatulina; Zachary L Steel; Jens T Stevens; Jan W van Wagtendonk; Kate Wilkin;Abstract Reducing the risk of large, severe wildfires while also increasing the security of mountain water supplies and enhancing biodiversity are urgent priorities in western US forests. After a century of fire suppression, Yosemite and Sequoia-Kings Canyon National Parks located in California’s Sierra Nevada initiated programs to manage wildfires and these areas present a rare opportunity to study the effects of restored fire regimes. Forest cover decreased during the managed wildfire period and meadow and shrubland cover increased, especially in Yosemite’s Illilouette Creek basin that experienced a 20% reduction in forest area. These areas now support greater pyrodiversity and consequently greater landscape and species diversity. Soil moisture increased and drought-induced tree mortality decreased, especially in Illilouette where wildfires have been allowed to burn more freely resulting in a 30% increase in summer soil moisture. Modeling suggests that the ecohydrological co-benefits of restoring fire regimes are robust to the projected climatic warming. Support will be needed from the highest levels of government and the public to maintain existing programs and expand them to other forested areas.
San José State Unive... arrow_drop_down San José State University ScholarWorksArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research CommunicationsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7620/ac17e2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert San José State Unive... arrow_drop_down San José State University ScholarWorksArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research CommunicationsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7620/ac17e2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United StatesPublisher:IOP Publishing Scott L Stephens; Sally Thompson; Gabrielle Boisramé; Brandon M Collins; Lauren C Ponisio; Ekaterina Rakhmatulina; Zachary L Steel; Jens T Stevens; Jan W van Wagtendonk; Kate Wilkin;Abstract Reducing the risk of large, severe wildfires while also increasing the security of mountain water supplies and enhancing biodiversity are urgent priorities in western US forests. After a century of fire suppression, Yosemite and Sequoia-Kings Canyon National Parks located in California’s Sierra Nevada initiated programs to manage wildfires and these areas present a rare opportunity to study the effects of restored fire regimes. Forest cover decreased during the managed wildfire period and meadow and shrubland cover increased, especially in Yosemite’s Illilouette Creek basin that experienced a 20% reduction in forest area. These areas now support greater pyrodiversity and consequently greater landscape and species diversity. Soil moisture increased and drought-induced tree mortality decreased, especially in Illilouette where wildfires have been allowed to burn more freely resulting in a 30% increase in summer soil moisture. Modeling suggests that the ecohydrological co-benefits of restoring fire regimes are robust to the projected climatic warming. Support will be needed from the highest levels of government and the public to maintain existing programs and expand them to other forested areas.
San José State Unive... arrow_drop_down San José State University ScholarWorksArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research CommunicationsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7620/ac17e2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert San José State Unive... arrow_drop_down San José State University ScholarWorksArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research CommunicationsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7620/ac17e2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Proceedings of the National Academy of Sciences Funded by:NSF | Graduate Research Fellows..., NSF | Graduate Research Fellows..., NSF | The Eel River Critical Zo...NSF| Graduate Research Fellowship Program ,NSF| Graduate Research Fellowship Program (GRFP) ,NSF| The Eel River Critical Zone Observatory: exploring how the critical zone will mediate watershed currencies and ecosystem response in a changing environmentStephanie M. Carlson; Kasey C. Pregler; Mariska Obedzinski; Sean P. Gallagher; Suzanne J. Rhoades; Cleo Woelfle-Hazard; Nathan Queener; Sally E. Thompson; Mary E. Power;Climate change is redistributing life on Earth, with profound impacts for ecosystems and human well-being. While repeat surveys separated by multidecadal intervals can determine whether observed shifts are in the expected direction (e.g., poleward or upslope due to climate change), they do not reveal their mechanisms or time scales: whether they were gradual responses to environmental trends or punctuated responses to disturbance events. Here, we document population reductions and temporary range contractions at multiple sites resulting from drought for three Pacific salmonids at their ranges’ trailing edge. During California’s 2012 to 2016 historic multiyear drought, the 2013 to 2014 winter stood apart because rainfall was both reduced and delayed. Extremely low river flows during the breeding season (“flow–phenology mismatch”) reduced or precluded access to breeding habitat. While Chinook ( Oncorhynchus tshawytscha) experienced a down-river range shift, entire cohorts failed in individual tributaries (steelhead trout, O. mykiss ) and in entire watersheds (coho salmon, O. kisutch) . Salmonids returned to impacted sites in subsequent years, rescued by reserves in the ocean, life history diversity, and, in one case, a conservation broodstock program. Large population losses can, however, leave trailing-edge populations vulnerable to extinction due to demographic stochasticity, making permanent range contraction more likely. When only a few large storms occur during high flow season, the timing of particular storms plays an outsized role in determining which migratory fish species are able to access their riverine breeding grounds and persist.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2415670122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2415670122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Proceedings of the National Academy of Sciences Funded by:NSF | Graduate Research Fellows..., NSF | Graduate Research Fellows..., NSF | The Eel River Critical Zo...NSF| Graduate Research Fellowship Program ,NSF| Graduate Research Fellowship Program (GRFP) ,NSF| The Eel River Critical Zone Observatory: exploring how the critical zone will mediate watershed currencies and ecosystem response in a changing environmentStephanie M. Carlson; Kasey C. Pregler; Mariska Obedzinski; Sean P. Gallagher; Suzanne J. Rhoades; Cleo Woelfle-Hazard; Nathan Queener; Sally E. Thompson; Mary E. Power;Climate change is redistributing life on Earth, with profound impacts for ecosystems and human well-being. While repeat surveys separated by multidecadal intervals can determine whether observed shifts are in the expected direction (e.g., poleward or upslope due to climate change), they do not reveal their mechanisms or time scales: whether they were gradual responses to environmental trends or punctuated responses to disturbance events. Here, we document population reductions and temporary range contractions at multiple sites resulting from drought for three Pacific salmonids at their ranges’ trailing edge. During California’s 2012 to 2016 historic multiyear drought, the 2013 to 2014 winter stood apart because rainfall was both reduced and delayed. Extremely low river flows during the breeding season (“flow–phenology mismatch”) reduced or precluded access to breeding habitat. While Chinook ( Oncorhynchus tshawytscha) experienced a down-river range shift, entire cohorts failed in individual tributaries (steelhead trout, O. mykiss ) and in entire watersheds (coho salmon, O. kisutch) . Salmonids returned to impacted sites in subsequent years, rescued by reserves in the ocean, life history diversity, and, in one case, a conservation broodstock program. Large population losses can, however, leave trailing-edge populations vulnerable to extinction due to demographic stochasticity, making permanent range contraction more likely. When only a few large storms occur during high flow season, the timing of particular storms plays an outsized role in determining which migratory fish species are able to access their riverine breeding grounds and persist.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2415670122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2415670122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:Elsevier BV Simone Gelsinari; Sarah Bourke; James McCallum; Don McFarlane; Joel Hall; Richard Silberstein; Sally Thompson;The response of groundwater recharge to climate change needs to be understood to enable sustainable management of groundwater systems today and in the future, yet observations of recharge over long-enough time periods to reveal responses to climate trends are scarce. Here we present a meta-analysis of 60 years of recharge studies over the Gnangara Groundwater System of South-West Western Australia, covering a period of sustained drying consistent with climate change projections. The recharge process in the area is defined by a wet winter during which rain saturates a deep, highly permeable soil profile with very low water storage capacity. Measurements of recharge since the 1960s show near-linear reductions in potential recharge of 50%, in response to a 20% reduction in rainfall. For the best-represented land cover in the dataset (Banksia woodland), the reduction in potential recharge was closer to 70%. A simple analytical model suggests that reductions in the duration of winter, coupled with a decreased frequency of winter storms, were most responsible for these declines, and reveals the potential for nonlinear relationships between the recharge fraction (recharge/precipitation) and climatic variables such as mean storm frequency, mean storm depth, and the length of the winter wet season. Overall, results suggest that recharge declines in drying Mediterranean groundwater systems are likely to outstrip the declines in rainfall, and that leveraging existing observation networks worldwide to characterise recharge responses to changing climate is needed to overcome existing interpretation challenges created by inconsistent sites, methods and durations of recharge estimation.
Journal of Hydrology arrow_drop_down Edith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2024.131007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Hydrology arrow_drop_down Edith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2024.131007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:Elsevier BV Simone Gelsinari; Sarah Bourke; James McCallum; Don McFarlane; Joel Hall; Richard Silberstein; Sally Thompson;The response of groundwater recharge to climate change needs to be understood to enable sustainable management of groundwater systems today and in the future, yet observations of recharge over long-enough time periods to reveal responses to climate trends are scarce. Here we present a meta-analysis of 60 years of recharge studies over the Gnangara Groundwater System of South-West Western Australia, covering a period of sustained drying consistent with climate change projections. The recharge process in the area is defined by a wet winter during which rain saturates a deep, highly permeable soil profile with very low water storage capacity. Measurements of recharge since the 1960s show near-linear reductions in potential recharge of 50%, in response to a 20% reduction in rainfall. For the best-represented land cover in the dataset (Banksia woodland), the reduction in potential recharge was closer to 70%. A simple analytical model suggests that reductions in the duration of winter, coupled with a decreased frequency of winter storms, were most responsible for these declines, and reveals the potential for nonlinear relationships between the recharge fraction (recharge/precipitation) and climatic variables such as mean storm frequency, mean storm depth, and the length of the winter wet season. Overall, results suggest that recharge declines in drying Mediterranean groundwater systems are likely to outstrip the declines in rainfall, and that leveraging existing observation networks worldwide to characterise recharge responses to changing climate is needed to overcome existing interpretation challenges created by inconsistent sites, methods and durations of recharge estimation.
Journal of Hydrology arrow_drop_down Edith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2024.131007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Hydrology arrow_drop_down Edith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2024.131007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Australia, United KingdomPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., ARC | Discovery Projects - Gran..., ARC | Discovery Early Career Re... +3 projectsARC| Discovery Early Career Researcher Award - Grant ID: DE190101182 ,ARC| Discovery Projects - Grant ID: DP190101823 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE210101654 ,ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE200100086 ,ARC| Australian Laureate Fellowships - Grant ID: FL190100003Jason Beringer; Caitlin E. Moore; Jamie Cleverly; David I. Campbell; Helen Cleugh; Martin G. De Kauwe; Miko U. F. Kirschbaum; Anne Griebel; Sam Grover; Alfredo Huete; Lindsay B. Hutley; Johannes Laubach; Tom Van Niel; Stefan K. Arndt; Alison C. Bennett; Lucas A. Cernusak; Derek Eamus; Cacilia M. Ewenz; Jordan P. Goodrich; Mingkai Jiang; Nina Hinko‐Najera; Peter Isaac; Sanaa Hobeichi; Jürgen Knauer; Georgia R. Koerber; Michael Liddell; Xuanlong Ma; Craig Macfarlane; Ian D. McHugh; Belinda E. Medlyn; Wayne S. Meyer; Alexander J. Norton; Jyoteshna Owens; Andy Pitman; Elise Pendall; Suzanne M. Prober; Ram L. Ray; Natalia Restrepo‐Coupe; Sami W. Rifai; David Rowlings; Louis Schipper; Richard P. Silberstein; Lina Teckentrup; Sally E. Thompson; Anna M. Ukkola; Aaron Wall; Ying‐Ping Wang; Tim J. Wardlaw; William Woodgate;AbstractIn 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those ‘next users’ of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under‐represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long‐term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.
University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1111/gcb.16141Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/308572Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1111/gcb.16141Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/308572Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Australia, United KingdomPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., ARC | Discovery Projects - Gran..., ARC | Discovery Early Career Re... +3 projectsARC| Discovery Early Career Researcher Award - Grant ID: DE190101182 ,ARC| Discovery Projects - Grant ID: DP190101823 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE210101654 ,ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE200100086 ,ARC| Australian Laureate Fellowships - Grant ID: FL190100003Jason Beringer; Caitlin E. Moore; Jamie Cleverly; David I. Campbell; Helen Cleugh; Martin G. De Kauwe; Miko U. F. Kirschbaum; Anne Griebel; Sam Grover; Alfredo Huete; Lindsay B. Hutley; Johannes Laubach; Tom Van Niel; Stefan K. Arndt; Alison C. Bennett; Lucas A. Cernusak; Derek Eamus; Cacilia M. Ewenz; Jordan P. Goodrich; Mingkai Jiang; Nina Hinko‐Najera; Peter Isaac; Sanaa Hobeichi; Jürgen Knauer; Georgia R. Koerber; Michael Liddell; Xuanlong Ma; Craig Macfarlane; Ian D. McHugh; Belinda E. Medlyn; Wayne S. Meyer; Alexander J. Norton; Jyoteshna Owens; Andy Pitman; Elise Pendall; Suzanne M. Prober; Ram L. Ray; Natalia Restrepo‐Coupe; Sami W. Rifai; David Rowlings; Louis Schipper; Richard P. Silberstein; Lina Teckentrup; Sally E. Thompson; Anna M. Ukkola; Aaron Wall; Ying‐Ping Wang; Tim J. Wardlaw; William Woodgate;AbstractIn 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those ‘next users’ of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under‐represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long‐term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.
University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1111/gcb.16141Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/308572Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1111/gcb.16141Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/308572Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Elsevier BV Funded by:SNSF | Addressing the water-ener...SNSF| Addressing the water-energy nexus in developing countries - a remote sensing feasibility assessment of in-line hydropower in NepalAuthors: Müller, Marc F; Thompson, Sally E; Gadgil, Ashok J;Community-scale power infrastructure may be the only electrification option for tens of millions households that remain out of reach from centralized power grids. The responsiveness of household electricity demand to price is a crucial design input for off-grid systems. While the price elasticity of electricity demand of grid-connected consumers has been abundantly studied, few studies focus on off-grid communities where substantial econometric challenges arise, including the absence of metered consumption data and electricity prices that are simultaneously determined by cost and demand considerations. This study attempts to address these challenges for the case of off-grid micro hydropower consumers. It makes two core contributions: First, we propose the surface area of the contributing hydrologic catchment as a new instrumental variable to estimate elasticity using a cross sectional dataset of existing micro hydropower infrastructure. Second, we provide a first price-elasticity estimate (−0.15) for off-grid electricity demand in Nepal. We surmise that the small (in absolute value) elasticity value found in this study arises from the low levels of consumption observed off-the-grid. We use a Monte Carlo analysis to show that failing to account for this disparity can lead to substantial financial losses caused by suboptimal power infrastructure design. Keywords: Rural electrification, Instrumental variable, Unmetered connection, Micro hydropower, Nepal
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/64d537cpData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.deveng.2017.12.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/64d537cpData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.deveng.2017.12.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Elsevier BV Funded by:SNSF | Addressing the water-ener...SNSF| Addressing the water-energy nexus in developing countries - a remote sensing feasibility assessment of in-line hydropower in NepalAuthors: Müller, Marc F; Thompson, Sally E; Gadgil, Ashok J;Community-scale power infrastructure may be the only electrification option for tens of millions households that remain out of reach from centralized power grids. The responsiveness of household electricity demand to price is a crucial design input for off-grid systems. While the price elasticity of electricity demand of grid-connected consumers has been abundantly studied, few studies focus on off-grid communities where substantial econometric challenges arise, including the absence of metered consumption data and electricity prices that are simultaneously determined by cost and demand considerations. This study attempts to address these challenges for the case of off-grid micro hydropower consumers. It makes two core contributions: First, we propose the surface area of the contributing hydrologic catchment as a new instrumental variable to estimate elasticity using a cross sectional dataset of existing micro hydropower infrastructure. Second, we provide a first price-elasticity estimate (−0.15) for off-grid electricity demand in Nepal. We surmise that the small (in absolute value) elasticity value found in this study arises from the low levels of consumption observed off-the-grid. We use a Monte Carlo analysis to show that failing to account for this disparity can lead to substantial financial losses caused by suboptimal power infrastructure design. Keywords: Rural electrification, Instrumental variable, Unmetered connection, Micro hydropower, Nepal
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/64d537cpData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.deveng.2017.12.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/64d537cpData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.deveng.2017.12.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United StatesPublisher:Public Library of Science (PLoS) Funded by:NSF | Graduate Research Fellows...NSF| Graduate Research Fellowship ProgramAuthors: Karst, Nathaniel; Dralle, David; Thompson, Sally;A broad class of soil fungi form the annular patterns known as 'fairy rings' and provide one of the only means to observe spatio-temporal dynamics of otherwise cryptic fungal growth processes in natural environments. We present observations of novel spiral and rotor patterns produced by fairy ring fungi and explain these behaviors mathematically by first showing that a well known model of fairy ring fungal growth and the Gray-Scott reaction-diffusion model are mathematically equivalent. We then use bifurcation analysis and numerical simulations to identify the conditions under which spiral waves and rotors can arise. We demonstrate that the region of dimensionless parameter space supporting these more complex dynamics is adjacent to that which produces the more familiar fairy rings, and identify experimental manipulations to test the transitions between these spatial modes. These same manipulations could also feasibly induce fungal colonies to transition from rotor/spiral formation to a set of richer, as yet unobserved, spatial patterns.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/54n86702Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0149254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/54n86702Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0149254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United StatesPublisher:Public Library of Science (PLoS) Funded by:NSF | Graduate Research Fellows...NSF| Graduate Research Fellowship ProgramAuthors: Karst, Nathaniel; Dralle, David; Thompson, Sally;A broad class of soil fungi form the annular patterns known as 'fairy rings' and provide one of the only means to observe spatio-temporal dynamics of otherwise cryptic fungal growth processes in natural environments. We present observations of novel spiral and rotor patterns produced by fairy ring fungi and explain these behaviors mathematically by first showing that a well known model of fairy ring fungal growth and the Gray-Scott reaction-diffusion model are mathematically equivalent. We then use bifurcation analysis and numerical simulations to identify the conditions under which spiral waves and rotors can arise. We demonstrate that the region of dimensionless parameter space supporting these more complex dynamics is adjacent to that which produces the more familiar fairy rings, and identify experimental manipulations to test the transitions between these spatial modes. These same manipulations could also feasibly induce fungal colonies to transition from rotor/spiral formation to a set of richer, as yet unobserved, spatial patterns.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/54n86702Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0149254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/54n86702Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0149254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:American Geophysical Union (AGU) Laurel G. Larsen; A. V. Lopes; Sally E. Thompson; Avery S. Cohn; Morgan C. Levy; Morgan C. Levy;doi: 10.1002/2017gl076526
AbstractNearly half of recent decades' global forest loss occurred in the Amazon and Cerrado (tropical savanna) biomes of Brazil, known as the arc of deforestation. Despite prior analysis in individual river basins, a generalizable empirical understanding of the effect of deforestation on streamflow across this region is lacking. We frame land use change in Brazil as a natural experiment and draw on in situ and remote sensing evidence in 324 river basins covering more than 3 × 106 km2 to estimate streamflow changes caused by deforestation and agricultural development between 1950 and 2013. Deforestation increased dry season low flow by between 4 and 10 percentage points (relative to the forested condition), corresponding to a regional‐ and time‐averaged rate of increase in specific streamflow of 1.29 mm/year2, equivalent to a 4.08 km3/year2 increase, assuming a stationary climate. In conjunction with rainfall and temperature variations, the net (observed) average increase in streamflow over the same period was 0.76 mm/year2, or 2.41 km3/year2. Thus, net increases in regional streamflow in the past half century are 58% of those that would have been experienced with deforestation given a stationary climate. This study uses a causal empirical analysis approach novel to the water sciences to verify the regional applicability of prior basin‐scale studies, provides a proof of concept for the use of observational causal identification methods in the water sciences, and demonstrates that deforestation masks the streamflow‐reducing effects of climate change in this region.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gl076526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gl076526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:American Geophysical Union (AGU) Laurel G. Larsen; A. V. Lopes; Sally E. Thompson; Avery S. Cohn; Morgan C. Levy; Morgan C. Levy;doi: 10.1002/2017gl076526
AbstractNearly half of recent decades' global forest loss occurred in the Amazon and Cerrado (tropical savanna) biomes of Brazil, known as the arc of deforestation. Despite prior analysis in individual river basins, a generalizable empirical understanding of the effect of deforestation on streamflow across this region is lacking. We frame land use change in Brazil as a natural experiment and draw on in situ and remote sensing evidence in 324 river basins covering more than 3 × 106 km2 to estimate streamflow changes caused by deforestation and agricultural development between 1950 and 2013. Deforestation increased dry season low flow by between 4 and 10 percentage points (relative to the forested condition), corresponding to a regional‐ and time‐averaged rate of increase in specific streamflow of 1.29 mm/year2, equivalent to a 4.08 km3/year2 increase, assuming a stationary climate. In conjunction with rainfall and temperature variations, the net (observed) average increase in streamflow over the same period was 0.76 mm/year2, or 2.41 km3/year2. Thus, net increases in regional streamflow in the past half century are 58% of those that would have been experienced with deforestation given a stationary climate. This study uses a causal empirical analysis approach novel to the water sciences to verify the regional applicability of prior basin‐scale studies, provides a proof of concept for the use of observational causal identification methods in the water sciences, and demonstrates that deforestation masks the streamflow‐reducing effects of climate change in this region.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gl076526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gl076526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United StatesPublisher:Elsevier BV Funded by:SNSF | Addressing the water-ener...SNSF| Addressing the water-energy nexus in developing countries - a remote sensing feasibility assessment of in-line hydropower in NepalAuthors: Müller, Marc F; Thompson, Sally E;Abstract Estimating precipitation over large spatial areas remains a challenging problem for hydrologists. Sparse ground-based gauge networks do not provide a robust basis for interpolation, and the reliability of remote sensing products, although improving, is still imperfect. Current techniques to estimate precipitation rely on combining these different kinds of measurements to correct the bias in the satellite observations. We propose a novel procedure that, unlike existing techniques, (i) allows correcting the possibly confounding effects of different sources of errors in satellite estimates, (ii) explicitly accounts for the spatial heterogeneity of the biases and (iii) allows the use of non overlapping historical observations. The proposed method spatially aggregates and interpolates gauge data at the satellite grid resolution by focusing on parameters that describe the frequency and intensity of the rainfall observed at the gauges. The resulting gridded parameters can then be used to adjust the probability density function of satellite rainfall observations at each grid cell, accounting for spatial heterogeneity. Unlike alternate methods, we explicitly adjust biases on rainfall frequency in addition to its intensity. Adjusted rainfall distributions can then readily be applied as input in stochastic rainfall generators or frequency domain hydrological models. Finally, we also provide a procedure to use them to correct remotely sensed rainfall time series. We apply the method to adjust the distributions of daily rainfall observed by the TRMM satellite in Nepal, which exemplifies the challenges associated with a sparse gauge network and large biases due to complex topography. In a cross-validation analysis on daily rainfall from TRMM 3B42 v6, we find that using a small subset of the available gauges, the proposed method outperforms local rainfall estimations using the complete network of available gauges to directly interpolate local rainfall or correct TRMM by adjusting monthly means. We conclude that the proposed frequency-domain bias correction approach is robust and reliable compared to other bias correction approaches.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2013Full-Text: https://escholarship.org/uc/item/1qs1j61kData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaAdvances in Water ResourcesArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2013.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2013Full-Text: https://escholarship.org/uc/item/1qs1j61kData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaAdvances in Water ResourcesArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2013.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United StatesPublisher:Elsevier BV Funded by:SNSF | Addressing the water-ener...SNSF| Addressing the water-energy nexus in developing countries - a remote sensing feasibility assessment of in-line hydropower in NepalAuthors: Müller, Marc F; Thompson, Sally E;Abstract Estimating precipitation over large spatial areas remains a challenging problem for hydrologists. Sparse ground-based gauge networks do not provide a robust basis for interpolation, and the reliability of remote sensing products, although improving, is still imperfect. Current techniques to estimate precipitation rely on combining these different kinds of measurements to correct the bias in the satellite observations. We propose a novel procedure that, unlike existing techniques, (i) allows correcting the possibly confounding effects of different sources of errors in satellite estimates, (ii) explicitly accounts for the spatial heterogeneity of the biases and (iii) allows the use of non overlapping historical observations. The proposed method spatially aggregates and interpolates gauge data at the satellite grid resolution by focusing on parameters that describe the frequency and intensity of the rainfall observed at the gauges. The resulting gridded parameters can then be used to adjust the probability density function of satellite rainfall observations at each grid cell, accounting for spatial heterogeneity. Unlike alternate methods, we explicitly adjust biases on rainfall frequency in addition to its intensity. Adjusted rainfall distributions can then readily be applied as input in stochastic rainfall generators or frequency domain hydrological models. Finally, we also provide a procedure to use them to correct remotely sensed rainfall time series. We apply the method to adjust the distributions of daily rainfall observed by the TRMM satellite in Nepal, which exemplifies the challenges associated with a sparse gauge network and large biases due to complex topography. In a cross-validation analysis on daily rainfall from TRMM 3B42 v6, we find that using a small subset of the available gauges, the proposed method outperforms local rainfall estimations using the complete network of available gauges to directly interpolate local rainfall or correct TRMM by adjusting monthly means. We conclude that the proposed frequency-domain bias correction approach is robust and reliable compared to other bias correction approaches.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2013Full-Text: https://escholarship.org/uc/item/1qs1j61kData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaAdvances in Water ResourcesArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2013.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2013Full-Text: https://escholarship.org/uc/item/1qs1j61kData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaAdvances in Water ResourcesArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2013.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Elsevier BV Funded by:SNSF | Mapping the economic pote...SNSF| Mapping the economic potential for combined micro-hydropower and water supply infrastructure in developing countriesAuthors: Müller, Marc F; Thompson, Sally E; Kelly, Maggi N;Rural electrification in developing countries is often hampered by major information gaps between local communities and urban centers, where technical expertise and funding are concentrated. The tool presented in this paper addresses these gaps to support the implementation of off-grid micro hydropower infrastructure. Specifically, we present a method to site, size and evaluate the potential for micro hydropower based on remote sensing data. The method improves on previous approaches by (i) incorporating the effect of hillslope topography on the optimal layout of the infrastructure, and (ii) accounting for the constraints imposed by streamflow variability and local electricity demand on the optimal size of the plants. An assessment of the method’s performance against 148 existing schemes indicates that it correctly identifies the most promising locations for hydropower in Nepal, but does not generally reproduce the specific design features of constructed plants, which are affected by site-specific constraints. We develop a proof-of-concept computer tool to explore the potential of webGIS technology to account for these constraints by collecting site-specific information from local users.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/4wq161v2Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.03.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/4wq161v2Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.03.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Elsevier BV Funded by:SNSF | Mapping the economic pote...SNSF| Mapping the economic potential for combined micro-hydropower and water supply infrastructure in developing countriesAuthors: Müller, Marc F; Thompson, Sally E; Kelly, Maggi N;Rural electrification in developing countries is often hampered by major information gaps between local communities and urban centers, where technical expertise and funding are concentrated. The tool presented in this paper addresses these gaps to support the implementation of off-grid micro hydropower infrastructure. Specifically, we present a method to site, size and evaluate the potential for micro hydropower based on remote sensing data. The method improves on previous approaches by (i) incorporating the effect of hillslope topography on the optimal layout of the infrastructure, and (ii) accounting for the constraints imposed by streamflow variability and local electricity demand on the optimal size of the plants. An assessment of the method’s performance against 148 existing schemes indicates that it correctly identifies the most promising locations for hydropower in Nepal, but does not generally reproduce the specific design features of constructed plants, which are affected by site-specific constraints. We develop a proof-of-concept computer tool to explore the potential of webGIS technology to account for these constraints by collecting site-specific information from local users.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/4wq161v2Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.03.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/4wq161v2Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.03.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Wiley Blair C. McLaughlin; David D. Ackerly; P. Zion Klos; Jennifer Natali; Todd E. Dawson; Sally E. Thompson;doi: 10.1111/gcb.13629
pmid: 28318131
AbstractClimate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability – mesic microenvironments – are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species‐specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate‐cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/4p20j97tData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 292 citations 292 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/4p20j97tData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Wiley Blair C. McLaughlin; David D. Ackerly; P. Zion Klos; Jennifer Natali; Todd E. Dawson; Sally E. Thompson;doi: 10.1111/gcb.13629
pmid: 28318131
AbstractClimate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability – mesic microenvironments – are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species‐specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate‐cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/4p20j97tData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 292 citations 292 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/4p20j97tData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu