- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Chetan Pandit; Bhim Sen Thapa; Bhagyashree Srivastava; Abhilasha Singh Mathuriya; +4 AuthorsChetan Pandit; Bhim Sen Thapa; Bhagyashree Srivastava; Abhilasha Singh Mathuriya; Umair-Ali Toor; Manu Pant; Soumya Pandit; Deepak-A. Jadhav;Due to the continuous depletion of natural resources currently used for electricity generation, it is imperative to develop alternative energy sources. Human waste is nowadays being explored as an efficient source to produce bio-energy. Human waste is renewable and can be used as a source for an uninterrupted energy supply in bioelectricity or biofuel. Annually, human waste such as urine is produced in trillions of liters globally. Hence, utilizing the waste to produce bioenergy is bio-economically suitable and ecologically balanced. Microbial fuel cells (MFCs) play a crucial role in providing an effective mode of bioelectricity production by implementing the role of transducers. MFCs convert organic matter into energy using bio-electro-oxidation of material to produce electricity. Over the years, MFCs have been explored prominently in various fields to find a backup for providing bioenergy and biofuel. MFCs involve the role of exoelectrogens which work as transducers to convert the material into electricity by catalyzing redox reactions. This review paper demonstrates how human waste is useful for producing electricity and how this innovation would be beneficial in the long term, considering the current scenario of increasing demand for the supply of products and shortages of natural resources used to produce biofuel and bioelectricity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/biotech11030036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/biotech11030036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Chetan Pandit; Bhim Sen Thapa; Bhagyashree Srivastava; Abhilasha Singh Mathuriya; +4 AuthorsChetan Pandit; Bhim Sen Thapa; Bhagyashree Srivastava; Abhilasha Singh Mathuriya; Umair-Ali Toor; Manu Pant; Soumya Pandit; Deepak-A. Jadhav;Due to the continuous depletion of natural resources currently used for electricity generation, it is imperative to develop alternative energy sources. Human waste is nowadays being explored as an efficient source to produce bio-energy. Human waste is renewable and can be used as a source for an uninterrupted energy supply in bioelectricity or biofuel. Annually, human waste such as urine is produced in trillions of liters globally. Hence, utilizing the waste to produce bioenergy is bio-economically suitable and ecologically balanced. Microbial fuel cells (MFCs) play a crucial role in providing an effective mode of bioelectricity production by implementing the role of transducers. MFCs convert organic matter into energy using bio-electro-oxidation of material to produce electricity. Over the years, MFCs have been explored prominently in various fields to find a backup for providing bioenergy and biofuel. MFCs involve the role of exoelectrogens which work as transducers to convert the material into electricity by catalyzing redox reactions. This review paper demonstrates how human waste is useful for producing electricity and how this innovation would be beneficial in the long term, considering the current scenario of increasing demand for the supply of products and shortages of natural resources used to produce biofuel and bioelectricity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/biotech11030036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/biotech11030036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu