Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • Authors: Hidetarô Abe; Shoko Abe; V. A. Acciari; I. Agudo; +96 Authors

    Resumen Estudiamos la emisión de banda ancha de Mrk 501 utilizando observaciones de múltiples longitudes de onda de 2017 a 2020 realizadas con una multitud de instrumentos, que involucran, entre otros, MAGIC, Fermi 's Large Area Telescope (LAT), NuSTAR, Swift, GASP-WEBT y el Owens Valley Radio Observatory. Mrk 501 mostró una actividad de banda ancha extremadamente baja, lo que puede ayudar a desentrañar su emisión de referencia. Sin embargo, se detectan variaciones de flujo significativas en todas las bandas de onda, y las más altas ocurren en rayos X y rayos γ de muy alta energía (VHE). Se mide una correlación significativa (>3 σ ) entre los rayos X y los rayos γ de VHE, lo que respalda los escenarios leptónicos para explicar las partes variables de la emisión, también durante la baja actividad. Esto se confirma aún más cuando ampliamos nuestros datos de 2008 a 2020 e identificamos, por primera vez, correlaciones significativas entre el telescopio de rayos X Swift y Fermi-LAT. Además, encontramos correlaciones entre los rayos γ de alta energía y la radio, con un retraso de la radio de más de 100 días, lo que coloca la zona de emisión de rayos γ aguas arriba de las regiones radiobrillantes en el chorro. Además, Mrk 501 mostró una actividad históricamente baja en rayos X y rayos γ VHE desde mediados de 2017 hasta mediados de 2019 con un flujo VHE estable (>0,2 TeV) del 5% de la emisión de la Nebulosa del Cangrejo. La distribución de energía espectral de banda ancha (sed) de este estado bajo de 2 años de duración, la emisión de referencia potencial de Mrk 501, se puede caracterizar con modelos leptónicos de una zona y con modelos (lepto) -hadrónicos que cumplen con las restricciones de flujo de neutrinos de IceCube. Exploramos la evolución temporal del sed hacia el estado bajo, revelando que la emisión de referencia estable puede atribuirse a un choque permanente, y la emisión variable a un choque adicional en expansión o en movimiento. Résumé Nous étudions l'émission à large bande de Mrk 501 à l'aide d'observations multi-longueurs d'onde de 2017 à 2020 effectuées avec une multitude d'instruments, impliquant, entre autres, MAGIC, le Large Area Telescope (LAT) de Fermi, NuSTAR, Swift, GASP-WEBT et l'Owens Valley Radio Observatory. Mrk 501 a montré une activité à large bande extrêmement faible, ce qui peut aider à démêler son émission de base. Néanmoins, des variations de flux significatives sont détectées à toutes les bandes d'ondes, les plus élevées se produisant aux rayons X et aux rayons γ de très haute énergie (VHE). Une corrélation significative (>3 σ ) entre les rayons X et les rayons γ VHE est mesurée, soutenant des scénarios leptoniques pour expliquer les parties variables de l'émission, également en cas de faible activité. Cela est également confirmé lorsque nous étendons nos données de 2008 à 2020 et identifions, pour la première fois, des corrélations significatives entre le télescope à rayons X Swift et Fermi-LAT. Nous trouvons en outre des corrélations entre les rayons γ de haute énergie et la radio, la radio étant en retard de plus de 100 jours, plaçant la zone d'émission des rayons γ en amont des régions radio-brillantes dans le jet. En outre, Mrk 501 a montré une activité historiquement faible dans les rayons X et les rayons γ VHE de mi-2017 à mi-2019 avec un flux VHE stable (>0,2 TeV) de 5% de l'émission de la nébuleuse du Crabe. La distribution d'énergie spectrale à large bande (SED) de cet état bas de 2 ans de long, l'émission de base potentielle de Mrk 501, peut être caractérisée avec des modèles leptoniques à une zone et avec des modèles (lepto)-hadroniques satisfaisant aux contraintes de flux de neutrinos de IceCube. Nous explorons l'évolution temporelle du SED vers l'état bas, révélant que l'émission de base stable peut être attribuée à un choc permanent et l'émission variable à un choc supplémentaire en expansion ou en déplacement. Abstract We study the broadband emission of Mrk 501 using multiwavelength observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi's Large Area Telescope (LAT), NuSTAR, Swift, GASP-WEBT, and the Owens Valley Radio Observatory. Mrk 501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Nonetheless, significant flux variations are detected at all wave bands, with the highest occurring at X-rays and very-high-energy (VHE) γ -rays. A significant correlation (>3 σ ) between X-rays and VHE γ -rays is measured, supporting leptonic scenarios to explain the variable parts of the emission, also during low activity. This is further supported when we extend our data from 2008 to 2020, and identify, for the first time, significant correlations between the Swift X-Ray Telescope and Fermi-LAT. We additionally find correlations between high-energy γ -rays and radio, with the radio lagging by more than 100 days, placing the γ -ray emission zone upstream of the radio-bright regions in the jet. Furthermore, Mrk 501 showed a historically low activity in X-rays and VHE γ -rays from mid-2017 to mid-2019 with a stable VHE flux (>0.2 TeV) of 5% the emission of the Crab Nebula. The broadband spectral energy distribution (SED) of this 2 yr long low state, the potential baseline emission of Mrk 501, can be characterized with one-zone leptonic models, and with (lepto)-hadronic models fulfilling neutrino flux constraints from IceCube. We explore the time evolution of the SED toward the low state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock. ندرس انبعاث النطاق العريض لـ MRK 501 باستخدام ملاحظات متعددة الأطوال الموجية من 2017 إلى 2020 التي يتم إجراؤها باستخدام العديد من الأدوات، والتي تشمل، من بين أمور أخرى، MAGIC، وتلسكوب فيرمي واسع النطاق (LAT)، و NuSTAR، و SWIFT، و GASP - WEBT، ومرصد أوينز فالي الراديوي. أظهر MRK 501 نشاطًا منخفضًا للغاية للنطاق العريض، مما قد يساعد في كشف انبعاثه الأساسي. ومع ذلك، يتم الكشف عن اختلافات كبيرة في التدفق في جميع نطاقات الموجة، مع حدوث أعلىها في الأشعة السينية وأشعة γ عالية الطاقة للغاية (VHE). يتم قياس ارتباط كبير (>3 σ ) بين الأشعة السينية وأشعة VHE γ، مما يدعم السيناريوهات اللبتونية لشرح الأجزاء المتغيرة من الانبعاث، أيضًا أثناء النشاط المنخفض. يتم دعم ذلك بشكل أكبر عندما نوسع بياناتنا من 2008 إلى 2020، ونحدد، لأول مرة، الارتباطات المهمة بين تلسكوب Swift X - Ray و Fermi - LAT. بالإضافة إلى ذلك، نجد ارتباطات بين أشعة جاما عالية الطاقة والراديو، حيث يتخلف الراديو بأكثر من 100 يوم، مما يضع منطقة انبعاث أشعة جاما في المنبع لمناطق الإشعاع الراديوي في الطائرة. علاوة على ذلك، أظهر Mrk 501 نشاطًا منخفضًا تاريخيًا في الأشعة السينية وأشعة VHE γ من منتصف عام 2017 إلى منتصف عام 2019 مع تدفق ثابت لـ VHE (>0.2 TeV) بنسبة 5 ٪ من انبعاث سديم السرطان. يمكن تمييز توزيع الطاقة الطيفية عريضة النطاق (SED) لهذه الحالة المنخفضة لمدة عامين، وهو الانبعاث الأساسي المحتمل لـ Mrk 501، بنماذج لبتونية من منطقة واحدة، وبنماذج (لبتو) - متناظرية تفي بقيود تدفق النيوترينو من IceCube. نستكشف التطور الزمني لـ SED نحو الحالة المنخفضة، مما يكشف عن أن انبعاث خط الأساس المستقر قد يعزى إلى صدمة دائمة، والانبعاث المتغير إلى صدمة إضافية متوسعة أو متنقلة.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Matteo Cerruti; F. Leone; Jose Miguel Miranda; T. Schweizer; +193 Authors

    Abstract Extreme high-frequency-peaked BL Lac objects (EHBLs) are blazars that exhibit extremely energetic synchrotron emission. They also feature nonthermal gamma-ray emission whose peak lies in the very high-energy (VHE, E > 100 GeV) range, and in some sources exceeds 1 TeV: this is the case for hard-TeV EHBLs such as 1ES 0229+200. With the aim of increasing the EHBL population, 10 targets were observed with the MAGIC telescopes from 2010 to 2017, for a total of 265 hr of good-quality data. The data were complemented by coordinated Swift observations. The X-ray data analysis confirms that all but two sources are EHBLs. The sources show only a modest variability and a harder-when-brighter behavior, typical for this class of objects. At VHE gamma-rays, three new sources were detected and a hint of a signal was found for another new source. In each case, the intrinsic spectrum is compatible with the hypothesis of a hard-TeV nature of these EHBLs. The broadband spectral energy distributions (SEDs) of all sources are built and modeled in the framework of a single-zone, purely leptonic model. The VHE gamma-ray-detected sources were also interpreted with a spine–layer model and a proton synchrotron model. The three models provide a good description of the SEDs. However, the resulting parameters differ substantially in the three scenarios, in particular the magnetization parameter. This work presents the first mini catalog of VHE gamma-ray and multiwavelength observations of EHBLs.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Università degli Stu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    The Astrophysical Journal Supplement Series
    Article . 2020 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    E-Prints Complutense
    Article . 2020 . Peer-reviewed
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.48550/ar...
    Article . 2019
    License: arXiv Non-Exclusive Distribution
    Data sources: Datacite
    Digital.CSIC
    Article . 2020
    Data sources: Digital.CSIC
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    41
    citations41
    popularityTop 1%
    influenceAverage
    impulseTop 1%
    BIP!Powered by BIP!
    visibility10
    visibilityviews10
    downloaddownloads5
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Università degli Stu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      The Astrophysical Journal Supplement Series
      Article . 2020 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      E-Prints Complutense
      Article . 2020 . Peer-reviewed
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.48550/ar...
      Article . 2019
      License: arXiv Non-Exclusive Distribution
      Data sources: Datacite
      Digital.CSIC
      Article . 2020
      Data sources: Digital.CSIC
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Acciari, V. A.; Ansoldi, S.; Antonelli, L. A.; Arbet Engels, A.; +181 Authors

    Context. Diffusive shock acceleration (DSA) is the most promising mechanism that accelerates Galactic cosmic rays (CRs) in the shocks of supernova remnants (SNRs). It is based on particles scattering caused by turbulence ahead and behind the shock. The turbulence upstream is supposedly generated by the CRs, but this process is not well understood. The dominant mechanism may depend on the evolutionary state of the shock and can be studied via the CRs escaping upstream into the interstellar medium (ISM).Aims. Previous observations of the γ Cygni SNR showed a difference in morphology between GeV and TeV energies. Since this SNR has the right age and is at the evolutionary stage for a significant fraction of CRs to escape, our aim is to understand γ-ray emission in the vicinity of the γ Cygni SNR.Methods. We observed the region of the γ Cygni SNR with the MAGIC Imaging Atmospheric Cherenkov telescopes between 2015 May and 2017 September recording 87 h of good-quality data. Additionally, we analysed Fermi-LAT data to study the energy dependence of the morphology as well as the energy spectrum in the GeV to TeV range. The energy spectra and morphology were compared against theoretical predictions, which include a detailed derivation of the CR escape process and their γ-ray generation.Results. The MAGIC and Fermi-LAT data allowed us to identify three emission regions that can be associated with the SNR and that dominate at different energies. Our hadronic emission model accounts well for the morphology and energy spectrum of all source components. It constrains the time-dependence of the maximum energy of the CRs at the shock, the time-dependence of the level of turbulence, and the diffusion coefficient immediately outside the SNR shock. While in agreement with the standard picture of DSA, the time-dependence of the maximum energy was found to be steeper than predicted, and the level of turbulence was found to change over the lifetime of the SNR.Key words: acceleration of particles / cosmic rays / gamma rays: general / gamma rays: ISM / ISM: clouds / ISM: supernova remnants★ Corresponding authors; e-mail: contact.magic@mpp.mpg.de Astronomy and astrophysics 670, A8 (2023). doi:10.1051/0004-6361/202038748 Published by EDP Sciences, Les Ulis

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
  • Authors: Hidetarô Abe; Shoko Abe; V. A. Acciari; I. Agudo; +96 Authors

    Resumen Estudiamos la emisión de banda ancha de Mrk 501 utilizando observaciones de múltiples longitudes de onda de 2017 a 2020 realizadas con una multitud de instrumentos, que involucran, entre otros, MAGIC, Fermi 's Large Area Telescope (LAT), NuSTAR, Swift, GASP-WEBT y el Owens Valley Radio Observatory. Mrk 501 mostró una actividad de banda ancha extremadamente baja, lo que puede ayudar a desentrañar su emisión de referencia. Sin embargo, se detectan variaciones de flujo significativas en todas las bandas de onda, y las más altas ocurren en rayos X y rayos γ de muy alta energía (VHE). Se mide una correlación significativa (>3 σ ) entre los rayos X y los rayos γ de VHE, lo que respalda los escenarios leptónicos para explicar las partes variables de la emisión, también durante la baja actividad. Esto se confirma aún más cuando ampliamos nuestros datos de 2008 a 2020 e identificamos, por primera vez, correlaciones significativas entre el telescopio de rayos X Swift y Fermi-LAT. Además, encontramos correlaciones entre los rayos γ de alta energía y la radio, con un retraso de la radio de más de 100 días, lo que coloca la zona de emisión de rayos γ aguas arriba de las regiones radiobrillantes en el chorro. Además, Mrk 501 mostró una actividad históricamente baja en rayos X y rayos γ VHE desde mediados de 2017 hasta mediados de 2019 con un flujo VHE estable (>0,2 TeV) del 5% de la emisión de la Nebulosa del Cangrejo. La distribución de energía espectral de banda ancha (sed) de este estado bajo de 2 años de duración, la emisión de referencia potencial de Mrk 501, se puede caracterizar con modelos leptónicos de una zona y con modelos (lepto) -hadrónicos que cumplen con las restricciones de flujo de neutrinos de IceCube. Exploramos la evolución temporal del sed hacia el estado bajo, revelando que la emisión de referencia estable puede atribuirse a un choque permanente, y la emisión variable a un choque adicional en expansión o en movimiento. Résumé Nous étudions l'émission à large bande de Mrk 501 à l'aide d'observations multi-longueurs d'onde de 2017 à 2020 effectuées avec une multitude d'instruments, impliquant, entre autres, MAGIC, le Large Area Telescope (LAT) de Fermi, NuSTAR, Swift, GASP-WEBT et l'Owens Valley Radio Observatory. Mrk 501 a montré une activité à large bande extrêmement faible, ce qui peut aider à démêler son émission de base. Néanmoins, des variations de flux significatives sont détectées à toutes les bandes d'ondes, les plus élevées se produisant aux rayons X et aux rayons γ de très haute énergie (VHE). Une corrélation significative (>3 σ ) entre les rayons X et les rayons γ VHE est mesurée, soutenant des scénarios leptoniques pour expliquer les parties variables de l'émission, également en cas de faible activité. Cela est également confirmé lorsque nous étendons nos données de 2008 à 2020 et identifions, pour la première fois, des corrélations significatives entre le télescope à rayons X Swift et Fermi-LAT. Nous trouvons en outre des corrélations entre les rayons γ de haute énergie et la radio, la radio étant en retard de plus de 100 jours, plaçant la zone d'émission des rayons γ en amont des régions radio-brillantes dans le jet. En outre, Mrk 501 a montré une activité historiquement faible dans les rayons X et les rayons γ VHE de mi-2017 à mi-2019 avec un flux VHE stable (>0,2 TeV) de 5% de l'émission de la nébuleuse du Crabe. La distribution d'énergie spectrale à large bande (SED) de cet état bas de 2 ans de long, l'émission de base potentielle de Mrk 501, peut être caractérisée avec des modèles leptoniques à une zone et avec des modèles (lepto)-hadroniques satisfaisant aux contraintes de flux de neutrinos de IceCube. Nous explorons l'évolution temporelle du SED vers l'état bas, révélant que l'émission de base stable peut être attribuée à un choc permanent et l'émission variable à un choc supplémentaire en expansion ou en déplacement. Abstract We study the broadband emission of Mrk 501 using multiwavelength observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi's Large Area Telescope (LAT), NuSTAR, Swift, GASP-WEBT, and the Owens Valley Radio Observatory. Mrk 501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Nonetheless, significant flux variations are detected at all wave bands, with the highest occurring at X-rays and very-high-energy (VHE) γ -rays. A significant correlation (>3 σ ) between X-rays and VHE γ -rays is measured, supporting leptonic scenarios to explain the variable parts of the emission, also during low activity. This is further supported when we extend our data from 2008 to 2020, and identify, for the first time, significant correlations between the Swift X-Ray Telescope and Fermi-LAT. We additionally find correlations between high-energy γ -rays and radio, with the radio lagging by more than 100 days, placing the γ -ray emission zone upstream of the radio-bright regions in the jet. Furthermore, Mrk 501 showed a historically low activity in X-rays and VHE γ -rays from mid-2017 to mid-2019 with a stable VHE flux (>0.2 TeV) of 5% the emission of the Crab Nebula. The broadband spectral energy distribution (SED) of this 2 yr long low state, the potential baseline emission of Mrk 501, can be characterized with one-zone leptonic models, and with (lepto)-hadronic models fulfilling neutrino flux constraints from IceCube. We explore the time evolution of the SED toward the low state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock. ندرس انبعاث النطاق العريض لـ MRK 501 باستخدام ملاحظات متعددة الأطوال الموجية من 2017 إلى 2020 التي يتم إجراؤها باستخدام العديد من الأدوات، والتي تشمل، من بين أمور أخرى، MAGIC، وتلسكوب فيرمي واسع النطاق (LAT)، و NuSTAR، و SWIFT، و GASP - WEBT، ومرصد أوينز فالي الراديوي. أظهر MRK 501 نشاطًا منخفضًا للغاية للنطاق العريض، مما قد يساعد في كشف انبعاثه الأساسي. ومع ذلك، يتم الكشف عن اختلافات كبيرة في التدفق في جميع نطاقات الموجة، مع حدوث أعلىها في الأشعة السينية وأشعة γ عالية الطاقة للغاية (VHE). يتم قياس ارتباط كبير (>3 σ ) بين الأشعة السينية وأشعة VHE γ، مما يدعم السيناريوهات اللبتونية لشرح الأجزاء المتغيرة من الانبعاث، أيضًا أثناء النشاط المنخفض. يتم دعم ذلك بشكل أكبر عندما نوسع بياناتنا من 2008 إلى 2020، ونحدد، لأول مرة، الارتباطات المهمة بين تلسكوب Swift X - Ray و Fermi - LAT. بالإضافة إلى ذلك، نجد ارتباطات بين أشعة جاما عالية الطاقة والراديو، حيث يتخلف الراديو بأكثر من 100 يوم، مما يضع منطقة انبعاث أشعة جاما في المنبع لمناطق الإشعاع الراديوي في الطائرة. علاوة على ذلك، أظهر Mrk 501 نشاطًا منخفضًا تاريخيًا في الأشعة السينية وأشعة VHE γ من منتصف عام 2017 إلى منتصف عام 2019 مع تدفق ثابت لـ VHE (>0.2 TeV) بنسبة 5 ٪ من انبعاث سديم السرطان. يمكن تمييز توزيع الطاقة الطيفية عريضة النطاق (SED) لهذه الحالة المنخفضة لمدة عامين، وهو الانبعاث الأساسي المحتمل لـ Mrk 501، بنماذج لبتونية من منطقة واحدة، وبنماذج (لبتو) - متناظرية تفي بقيود تدفق النيوترينو من IceCube. نستكشف التطور الزمني لـ SED نحو الحالة المنخفضة، مما يكشف عن أن انبعاث خط الأساس المستقر قد يعزى إلى صدمة دائمة، والانبعاث المتغير إلى صدمة إضافية متوسعة أو متنقلة.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Matteo Cerruti; F. Leone; Jose Miguel Miranda; T. Schweizer; +193 Authors

    Abstract Extreme high-frequency-peaked BL Lac objects (EHBLs) are blazars that exhibit extremely energetic synchrotron emission. They also feature nonthermal gamma-ray emission whose peak lies in the very high-energy (VHE, E > 100 GeV) range, and in some sources exceeds 1 TeV: this is the case for hard-TeV EHBLs such as 1ES 0229+200. With the aim of increasing the EHBL population, 10 targets were observed with the MAGIC telescopes from 2010 to 2017, for a total of 265 hr of good-quality data. The data were complemented by coordinated Swift observations. The X-ray data analysis confirms that all but two sources are EHBLs. The sources show only a modest variability and a harder-when-brighter behavior, typical for this class of objects. At VHE gamma-rays, three new sources were detected and a hint of a signal was found for another new source. In each case, the intrinsic spectrum is compatible with the hypothesis of a hard-TeV nature of these EHBLs. The broadband spectral energy distributions (SEDs) of all sources are built and modeled in the framework of a single-zone, purely leptonic model. The VHE gamma-ray-detected sources were also interpreted with a spine–layer model and a proton synchrotron model. The three models provide a good description of the SEDs. However, the resulting parameters differ substantially in the three scenarios, in particular the magnetization parameter. This work presents the first mini catalog of VHE gamma-ray and multiwavelength observations of EHBLs.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Università degli Stu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    The Astrophysical Journal Supplement Series
    Article . 2020 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    E-Prints Complutense
    Article . 2020 . Peer-reviewed
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.48550/ar...
    Article . 2019
    License: arXiv Non-Exclusive Distribution
    Data sources: Datacite
    Digital.CSIC
    Article . 2020
    Data sources: Digital.CSIC
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    41
    citations41
    popularityTop 1%
    influenceAverage
    impulseTop 1%
    BIP!Powered by BIP!
    visibility10
    visibilityviews10
    downloaddownloads5
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Università degli Stu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      The Astrophysical Journal Supplement Series
      Article . 2020 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      E-Prints Complutense
      Article . 2020 . Peer-reviewed
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.48550/ar...
      Article . 2019
      License: arXiv Non-Exclusive Distribution
      Data sources: Datacite
      Digital.CSIC
      Article . 2020
      Data sources: Digital.CSIC
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Acciari, V. A.; Ansoldi, S.; Antonelli, L. A.; Arbet Engels, A.; +181 Authors

    Context. Diffusive shock acceleration (DSA) is the most promising mechanism that accelerates Galactic cosmic rays (CRs) in the shocks of supernova remnants (SNRs). It is based on particles scattering caused by turbulence ahead and behind the shock. The turbulence upstream is supposedly generated by the CRs, but this process is not well understood. The dominant mechanism may depend on the evolutionary state of the shock and can be studied via the CRs escaping upstream into the interstellar medium (ISM).Aims. Previous observations of the γ Cygni SNR showed a difference in morphology between GeV and TeV energies. Since this SNR has the right age and is at the evolutionary stage for a significant fraction of CRs to escape, our aim is to understand γ-ray emission in the vicinity of the γ Cygni SNR.Methods. We observed the region of the γ Cygni SNR with the MAGIC Imaging Atmospheric Cherenkov telescopes between 2015 May and 2017 September recording 87 h of good-quality data. Additionally, we analysed Fermi-LAT data to study the energy dependence of the morphology as well as the energy spectrum in the GeV to TeV range. The energy spectra and morphology were compared against theoretical predictions, which include a detailed derivation of the CR escape process and their γ-ray generation.Results. The MAGIC and Fermi-LAT data allowed us to identify three emission regions that can be associated with the SNR and that dominate at different energies. Our hadronic emission model accounts well for the morphology and energy spectrum of all source components. It constrains the time-dependence of the maximum energy of the CRs at the shock, the time-dependence of the level of turbulence, and the diffusion coefficient immediately outside the SNR shock. While in agreement with the standard picture of DSA, the time-dependence of the maximum energy was found to be steeper than predicted, and the level of turbulence was found to change over the lifetime of the SNR.Key words: acceleration of particles / cosmic rays / gamma rays: general / gamma rays: ISM / ISM: clouds / ISM: supernova remnants★ Corresponding authors; e-mail: contact.magic@mpp.mpg.de Astronomy and astrophysics 670, A8 (2023). doi:10.1051/0004-6361/202038748 Published by EDP Sciences, Les Ulis

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph