Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
30 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid David Moser;
    David Moser
    ORCID
    Harvested from ORCID Public Data File

    David Moser in OpenAIRE
    orcid Roberto Vaccaro;
    Roberto Vaccaro
    ORCID
    Harvested from ORCID Public Data File

    Roberto Vaccaro in OpenAIRE
    orcid Wolfram Sparber;
    Wolfram Sparber
    ORCID
    Harvested from ORCID Public Data File

    Wolfram Sparber in OpenAIRE
    orcid Matteo Giacomo Prina;
    Matteo Giacomo Prina
    ORCID
    Harvested from ORCID Public Data File

    Matteo Giacomo Prina in OpenAIRE

    To face environmental and energy security issues, planning an energy system with high penetration of renewables is becoming increasingly important. The EPLANopt model couples a multi-objective evolutionary algorithm to EnergyPLAN simulation software to study the future best energy mix. In this study, EPLANopt is applied to the case study of Niederösterreich, an Austrian region, to inspect the best configurations of the energy system at 2050. This model is used to inspect the competition between different renewable energy integration options. Storage systems, power to gas, power to heat or power to mobility are all integration options taken into account to study their competition in presence of electricity excess from renewables. The results show that in order to decarbonize the energy system the increase of the installed power of renewables is not enough to reach the CO2 reduction objective. Integration methods like the already mentioned storage systems, power to gas, power to heat or power to mobility become relevant. In particular the results show a deep energy efficiency refurbishment coupled to power to heat through heat pumps. Power to gas presents a relevant role in the integration of the excess of electricity from renewables. However, at the increase of electric mobility penetration the available excess of electricity is reduced and the deployment of power to gas decreases. International Journal of Sustainable Energy Planning and Management, Vol. 27 (2020): Special Issue from the 5th International Conference on Smart Energy Systems

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Aaron Estrada Poggio;
    Aaron Estrada Poggio
    ORCID
    Harvested from ORCID Public Data File

    Aaron Estrada Poggio in OpenAIRE
    orcid Giuseppe Rotondo;
    Giuseppe Rotondo
    ORCID
    Harvested from ORCID Public Data File

    Giuseppe Rotondo in OpenAIRE
    orcid Matteo Giacomo Prina;
    Matteo Giacomo Prina
    ORCID
    Harvested from ORCID Public Data File

    Matteo Giacomo Prina in OpenAIRE
    orcid Alyona Zubaryeva;
    Alyona Zubaryeva
    ORCID
    Harvested from ORCID Public Data File

    Alyona Zubaryeva in OpenAIRE
    +1 Authors

    As electric vehicle adoption grows, understanding the impact of electric vehicle charging on electricity grids becomes increasingly important. Accurate grid impact modelling requires high-quality charging infrastructure data. This study examined the electric vehicle recharging infrastructure and usage patterns in a region of the Italian Alps over a three-year period from 2021 to 2023. The primary objectives were to analyze the growth and distribution of electric vehicle charging stations, assess energy consumption, and evaluate charging behaviours across various recharging points. The research involved collecting empirical data from 411,800 recharging sessions and simulated data using the emobpy tool to model energy consumption and charging behavior. Key findings reveal a substantial increase in the number of recharging points, from 673 in 2021 to 970 in 2023, with the total energy delivered increasing from 938 MWh in 2021 to 4133 MWh in 2023. The data showed distinct temporal trends: AC points were primarily used during the day, while DC points saw higher usage during morning and late afternoon peaks, aligning with travelling times. The study’s validation of simulation results against empirical data emphasized the importance of high-quality input for accurate grid impact assessments. These findings suggest the necessity for strategic placement of recharging infrastructure and provide practical insights for policymakers, urban planners, and utility companies to support sustainable electric vehicle integration.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Applied Sciences
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Applied Sciences
    Article . 2024
    Data sources: DOAJ
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Applied Sciences
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Applied Sciences
      Article . 2024
      Data sources: DOAJ
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Wolfram Sparber;
    Wolfram Sparber
    ORCID
    Harvested from ORCID Public Data File

    Wolfram Sparber in OpenAIRE
    orcid J. E. Wagner;
    J. E. Wagner
    ORCID
    Harvested from ORCID Public Data File

    J. E. Wagner in OpenAIRE
    orcid P. Ingenhoven;
    P. Ingenhoven
    ORCID
    Harvested from ORCID Public Data File

    P. Ingenhoven in OpenAIRE
    orcid Philipp Weihs;
    Philipp Weihs
    ORCID
    Harvested from ORCID Public Data File

    Philipp Weihs in OpenAIRE
    +2 Authors

    Abstract The interest in the assessment of performance loss rate (PLR) of Photovoltaic (PV) modules and arrays has been increasing as long as the global installed power expands and ages. Reliable performance metrics, statistical methods and filtering techniques exploiting continuous outdoor measurements are therefore needed, in order to foster solar bankability of PV systems. This work presents an improved estimation method to decrease the uncertainty associated to PLR assessment by (a) using the array generated power metric corrected to Standard Test Conditions (STC), namely P max , STC , to minimize seasonal oscillations, (b) applying a filtering technique to eliminate outliers and (c) performing linear interpolation on P max , STC monthly averages series. Estimated PLR and its uncertainty are assessed using three-years data from twenty-four grid-connected PV arrays representing nine different PV technologies and results are compared with two other widely-recognized performance metrics, namely: the Array Performance Ratio ( PR a ) and the Array Photovoltaic for Utility Systems Applications ( PVUSA a ). Results show (a) that adding spectral correction to irradiance and temperature correction reduces the uncertainty of 25% on average and (b) that the uncertainty associated to P max , STC metric is reduced to more than 60% on average with respect to the other investigated metrics for crystalline silicon-based technologies, while it is comparable in the case of thin-film technologies. Finally, two procedures estimating the first year PLR and the the first five months PLR are presented and discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    48
    citations48
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Steffi Misconel;
    Steffi Misconel
    ORCID
    Harvested from ORCID Public Data File

    Steffi Misconel in OpenAIRE
    orcid Matteo Giacomo Prina;
    Matteo Giacomo Prina
    ORCID
    Harvested from ORCID Public Data File

    Matteo Giacomo Prina in OpenAIRE
    orcid Hannes Hobbie;
    Hannes Hobbie
    ORCID
    Harvested from ORCID Public Data File

    Hannes Hobbie in OpenAIRE
    orcid Dominik Möst;
    Dominik Möst
    ORCID
    Harvested from ORCID Public Data File

    Dominik Möst in OpenAIRE
    +1 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    21
    citations21
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Alice Di Bella;
    Alice Di Bella
    ORCID
    Harvested from ORCID Public Data File

    Alice Di Bella in OpenAIRE
    Federico Canti; orcid Matteo Giacomo Prina;
    Matteo Giacomo Prina
    ORCID
    Harvested from ORCID Public Data File

    Matteo Giacomo Prina in OpenAIRE
    orcid Valeria Casalicchio;
    Valeria Casalicchio
    ORCID
    Harvested from ORCID Public Data File

    Valeria Casalicchio in OpenAIRE
    +2 Authors

    Abstract In 2021 the European Commission has proposed the Fit-for-55 policy package, requiring European countries to reduce their CO2 emissions by 55% with respect to 1990 by the year 2030, a first step to achieve carbon neutrality by 2050. Energy system modeling can be a valuable tool for national policymakers to choose the most appropriate technologies to achieve these goals efficiently. This article presents a model of the Italian power system realized employing the open energy modeling framework, Oemof. A linear programming optimization is implemented to evaluate how to minimize system costs at decreasing CO2 emissions in 2030. The developed tool is applied to evaluate different research questions: (i) pathway towards full decarbonization and power self-sufficiency of the electricity sector in Italy, (ii) relevance of flexibility assets in power grids: li-ion batteries, hydrogen storage and transmission lines reinforcement. A 55% CO2 emissions reduction for the actual Italian power sector can be achieved through an increase of 30% of the total annual system cost. Achieving complete decarbonization and self-sufficiency increases significatively annual expenditures. However, cost mitigation is plausible through the integration of sector coupling methodologies or the adoption of a broader spectrum of technological solutions. Flexibility measures appear instrumental for decarbonization, particularly transmission lines, demanding a substantial expansion beyond the stated plans for 2030. This infrastructure is crucial in Italy to facilitate the transfer of renewable electricity generated in the Southern regions to the Northern areas, where a large portion of the electricity demand is located.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Research: Energy
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Research: Energy
    Article . 2024
    Data sources: DOAJ
    https://doi.org/10.2139/ssrn.4...
    Article . 2024 . Peer-reviewed
    Data sources: Crossref
    https://dx.doi.org/10.48550/ar...
    Article . 2023
    License: CC BY NC SA
    Data sources: Datacite
    addClaim
    Access Routes
    Green
    gold
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Environmental Research: Energy
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Environmental Research: Energy
      Article . 2024
      Data sources: DOAJ
      https://doi.org/10.2139/ssrn.4...
      Article . 2024 . Peer-reviewed
      Data sources: Crossref
      https://dx.doi.org/10.48550/ar...
      Article . 2023
      License: CC BY NC SA
      Data sources: Datacite
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Matteo Giacomo Prina;
    Matteo Giacomo Prina
    ORCID
    Harvested from ORCID Public Data File

    Matteo Giacomo Prina in OpenAIRE
    orcid Alyona Zubaryeva;
    Alyona Zubaryeva
    ORCID
    Harvested from ORCID Public Data File

    Alyona Zubaryeva in OpenAIRE
    orcid Giuseppe Rotondo;
    Giuseppe Rotondo
    ORCID
    Harvested from ORCID Public Data File

    Giuseppe Rotondo in OpenAIRE
    orcid Andrea Grotto;
    Andrea Grotto
    ORCID
    Harvested from ORCID Public Data File

    Andrea Grotto in OpenAIRE
    +1 Authors

    The transition to sustainable waterways transport is imperative in the face of environmental and climate challenges. Local lakes, often overlooked, play a significant role in regional transportation networks and ecosystems. This study focuses on Orta lake, Italy, and aims to facilitate its transition to sustainable inland waterways transport by substituting its diesel-based fleet with electric vessels. Firstly, a comprehensive market analysis was conducted to understand the available electric vessel models and their technical characteristics. This included parameters such as capacity, range, and charging time. Based on the market analysis, an optimization model was developed to determine the minimum number of electric vessels required to completely replace the existing diesel-based fleet. This model considers various constraints and objectives, such as meeting transport demand, minimizing the number of vessels, and reducing environmental impact. The developed model was then applied to the case study of Orta lake using the collected market data. The results indicate an optimal fleet configuration and provide insights into the feasibility and implications of the transition. This study contributes to the growing body of knowledge on sustainable inland waterways transport and offers a methodology that can be replicated and adapted for other local lakes or maritime settings.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Applied Sciences
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Applied Sciences
    Article . 2023
    Data sources: DOAJ
    addClaim
    2
    citations2
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Applied Sciences
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Applied Sciences
      Article . 2023
      Data sources: DOAJ
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Matteo Giacomo Prina;
    Matteo Giacomo Prina
    ORCID
    Harvested from ORCID Public Data File

    Matteo Giacomo Prina in OpenAIRE
    orcid Valeria Casalicchio;
    Valeria Casalicchio
    ORCID
    Harvested from ORCID Public Data File

    Valeria Casalicchio in OpenAIRE
    orcid bw Cord Kaldemeyer;
    Cord Kaldemeyer
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Cord Kaldemeyer in OpenAIRE
    orcid Giampaolo Manzolini;
    Giampaolo Manzolini
    ORCID
    Harvested from ORCID Public Data File

    Giampaolo Manzolini in OpenAIRE
    +3 Authors

    Abstract Energy system modelling supports decision-makers in the development of short and long-term energy strategies. In the field of bottom-up short-term energy system models, high resolution in time and space, the implementation of sector coupling and the adoption of a multi-objective investment optimization have never been achieved simultaneously because of the high computational effort. Within this paper, such a bottom-up short-term model which simultaneously implements (i) hourly temporal resolution, (ii) multi-node approach thus high spatial resolution, (iii) integrates the electric, thermal and transport sectors and (iv) implements a multi-objective investment optimization method is proposed. The developed method is applied to the Italian energy system at 2050 to test and show its main features. The model allows the evaluation of the hourly curtailments for each node. The optimization highlights that the cheapest solutions work towards high curtailments and low investments in flexibility options. In order to further reduce the CO2 emissions the investments in flexibility options like electric storage batteries and reinforcement and enlargement of the transmission grid become relevant.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    53
    citations53
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Juan Francisco De Negri; orcid Sonja Gantioler;
    Sonja Gantioler
    ORCID
    Harvested from ORCID Public Data File

    Sonja Gantioler in OpenAIRE
    orcid David Moser;
    David Moser
    ORCID
    Harvested from ORCID Public Data File

    David Moser in OpenAIRE
    orcid Wolfram Sparber;
    Wolfram Sparber
    ORCID
    Harvested from ORCID Public Data File

    Wolfram Sparber in OpenAIRE
    +1 Authors

    AbstractThe use of photovoltaic technology is crucial to meet Europe´s ambitious climate and energy objectives set for 2030. To facilitate this shift, technological innovation is a key prerequisite, and the provision of public funding for related research and development is an important trigger. For this study, a vast set of data has been collected to explore how the EU and its Member States, plus Norway and Turkey, have so far invested in photovoltaic research and development. Based on historic values and actual trends, the authors additionally outline the possible future evolution of the investigated public funding. The study aims to shed light on the development of funding from the early 1970s until 2017 (most recent data available) and provide a forecast for 2030 (based on a business-as-usual scenario). According to results, at the national level, public funding had a considerable and steady rise after the OPEC´s oil embargo in 1973, reaching a first peak in the mid-1980s. The authors predict that, according to the most recent trends, by 2030, these will surpass 200 million € annually. In comparison, EU funding has steadily increased since its inception in the late 1980s up until 2007, but its evolvement is distinctively different, evidencing high fluctuations. The cumulative stock is also examined. National sources outweigh EU programs by a factor of almost five, and the stock should surpass 7 billion € by 2030. Based on the analysis and related insights, recommendations are elaborated on how the development of funding could inform policy strategies and actions to support research and development for photovoltaic technology.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://link.springer.com/cont...
    Part of book or chapter of book
    License: CC BY
    Data sources: UnpayWall
    addClaim
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://link.springer.com/cont...
      Part of book or chapter of book
      License: CC BY
      Data sources: UnpayWall
      addClaim
  • Authors: Roberto Fedrizzi; orcid Wolfram Sparber;
    Wolfram Sparber
    ORCID
    Harvested from ORCID Public Data File

    Wolfram Sparber in OpenAIRE
    orcid Simon Pezzutto;
    Simon Pezzutto
    ORCID
    Harvested from ORCID Public Data File

    Simon Pezzutto in OpenAIRE
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Prina, Matteo Giacomo;
    Prina, Matteo Giacomo
    ORCID
    Harvested from ORCID Public Data File

    Prina, Matteo Giacomo in OpenAIRE
    Cozzini, Marco; Garegnani, Giulia; orcid Manzolini, Giampaolo;
    Manzolini, Giampaolo
    ORCID
    Harvested from ORCID Public Data File

    Manzolini, Giampaolo in OpenAIRE
    +5 Authors

    Abstract The planning of energy systems with high penetration of renewables is becoming more and more important due to environmental and security issues. On the other hand, high shares of renewables require proper grid integration strategies. In order to overcome these obstacles, the diversification of renewable energy technologies, programmable or not, coupled with different types of storage, daily and seasonal, is recommended. The optimization of the different energy sources is a multi-objective optimization problem because it concerns economical, technical and environmental aspects. The aim of this study is to present the model EPLANopt, developed by Eurac Research, which couples the deterministic simulation model EnergyPLAN developed by Aalborg University with a Multi-Objective Evolutionary Algorithm built on the Python library DEAP. The test case is the energy system of South Tyrol, for which results obtained through this methodology are presented. Particular attention is devoted to the analysis of energy efficiency in buildings. A curve representing the marginal costs of the different energy efficiency strategies versus the annual energy saving is applied to the model through an external Python script. This curve describes the energy efficiency costs for different types of buildings depending on construction period and location.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RE.PUBLIC@POLIMI Res...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy
    Article . 2018 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    addClaim
    Access Routes
    Green
    hybrid
    109
    citations109
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RE.PUBLIC@POLIMI Res...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy
      Article . 2018 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right
Powered by OpenAIRE graph