- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, United StatesPublisher:Elsevier BV FAVILLA, ELENA; CITTADINO, GIOVANNI; VERONESI, STEFANO; TONELLI, MAURO; Fischer, Stefan; Goldschmidt, Jan Christoph; Cassanho, Arlete; Jenssen, Hans P.;handle: 11568/841320
Infrared to visible upconversion (UC) is a promising way to enhance the efficiency of silicon based solar cells. In this paper, the spectral conversion and recovery of sub-band gap photons of the solar spectrum, from NIR-IR to the VIS-NIR wavelength region, is investigated in two fluorides hosts doped with trivalent erbium ions (Er3+). The efficiency gain due to upconversion in silicon solar cells is compared for single crystal samples of BaY2F8:Er3+ and LiYF4:Er3+ in a dedicated upconverter solar cell device (UCSCD) with monochromatic excitation in the 1.5 mu m spectral region. The highest external quantum efficiency due to upconversion was found for the UCSCD using the BaY2F8:30 at% Er3+ single crystal, reaching an EQE of 6.8 +/- 0.2% for (1.10 +/- 0.12).10(5) W m(-2) spectral irradiance at 1494 nm. We present a comprehensive spectroscopic study of the crystal samples also taking into account the effects of the different crystal symmetry as well as the different phonon energies. Our findings enable us to explain the higher efficiency of the BaY2F8:Er3+ compared to the LiYF4:Er3+ upconverter in terms of both static and dynamic properties. (C) 2016 Elsevier B.V. All rights reserved.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della Ricerca - Università di PisaArticle . 2016Data sources: Archivio della Ricerca - Università di Pisaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.05.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della Ricerca - Università di PisaArticle . 2016Data sources: Archivio della Ricerca - Università di Pisaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.05.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, United StatesPublisher:Elsevier BV FAVILLA, ELENA; CITTADINO, GIOVANNI; VERONESI, STEFANO; TONELLI, MAURO; Fischer, Stefan; Goldschmidt, Jan Christoph; Cassanho, Arlete; Jenssen, Hans P.;handle: 11568/841320
Infrared to visible upconversion (UC) is a promising way to enhance the efficiency of silicon based solar cells. In this paper, the spectral conversion and recovery of sub-band gap photons of the solar spectrum, from NIR-IR to the VIS-NIR wavelength region, is investigated in two fluorides hosts doped with trivalent erbium ions (Er3+). The efficiency gain due to upconversion in silicon solar cells is compared for single crystal samples of BaY2F8:Er3+ and LiYF4:Er3+ in a dedicated upconverter solar cell device (UCSCD) with monochromatic excitation in the 1.5 mu m spectral region. The highest external quantum efficiency due to upconversion was found for the UCSCD using the BaY2F8:30 at% Er3+ single crystal, reaching an EQE of 6.8 +/- 0.2% for (1.10 +/- 0.12).10(5) W m(-2) spectral irradiance at 1494 nm. We present a comprehensive spectroscopic study of the crystal samples also taking into account the effects of the different crystal symmetry as well as the different phonon energies. Our findings enable us to explain the higher efficiency of the BaY2F8:Er3+ compared to the LiYF4:Er3+ upconverter in terms of both static and dynamic properties. (C) 2016 Elsevier B.V. All rights reserved.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della Ricerca - Università di PisaArticle . 2016Data sources: Archivio della Ricerca - Università di Pisaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.05.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della Ricerca - Università di PisaArticle . 2016Data sources: Archivio della Ricerca - Università di Pisaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.05.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu