- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:Wiley Funded by:NSF | OPUS: Recovery, resilienc...NSF| OPUS: Recovery, resilience and the ecology of changeKatharine N. Suding; Courtney G. Collins; Lauren M. Hallett; Loralee Larios; Laurel M. Brigham; Joan Dudney; Emily C. Farrer; Julie E. Larson; Nancy Shackelford; Marko J. Spasojevic;doi: 10.1002/ecy.4322
pmid: 39014865
AbstractAccompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant–plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external‐driver internal‐topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/40z9j02qData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/40z9j02qData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:Wiley Funded by:NSF | OPUS: Recovery, resilienc...NSF| OPUS: Recovery, resilience and the ecology of changeKatharine N. Suding; Courtney G. Collins; Lauren M. Hallett; Loralee Larios; Laurel M. Brigham; Joan Dudney; Emily C. Farrer; Julie E. Larson; Nancy Shackelford; Marko J. Spasojevic;doi: 10.1002/ecy.4322
pmid: 39014865
AbstractAccompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant–plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external‐driver internal‐topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/40z9j02qData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/40z9j02qData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Springer Science and Business Media LLC Magda Garbowski; Carla M. Burton; Lauren M. Porensky; Sandra Dullau; Jeremy J. James; Monica L. Pokorny; Lauren N. Svejcar; Eman Calleja; Carina Becker; Matt A. Bahm; Réka Kiss; Nancy Shackelford; Nancy Shackelford; Megan Wong; Péter Török; Seth M. Munson; Hannah L. Farrell; Jose A. Navarro-Cano; Jayne Jonas-Bratten; Erin K. Espeland; Manuel Esteban Lucas-Borja; Martin F. Breed; Kari E. Veblen; Qinfeng Guo; Gustavo Brant Paterno; Gustavo Brant Paterno; Kirk W. Davies; Thomas A. Monaco; Patricia M. Holmes; Julie E. Larson; Barry Heydenrych; Orsolya Valkó; Peter A. Harrison; Matthew J. Rinella; Kevin Z. Mganga; Penelope A. Grey; Pablo Luis Peri; R. Emiliano Quiroga; Arlee M. Montalvo; Enrique G. de la Riva; Stephen E. Fick; Anita Kirmer; Tamás Miglécz; Zhiwei Xu; Jessica Drake; Daniel E. Winkler; Joshua Eldridge; Balázs Deák; Chad S. Boyd; Nichole N. Barger; Akasha M. Faist; Alex Caruana; Katharine L. Suding; Katharine L. Suding; Peter J. Carrick; Tina Parkhurst; Owen W. Baughman; Charlie D. Clements; Andrea T. Kramer; Mark W. Paschke; Merilynn C. Schantz; Luis Merino-Martín; Michael F. Curran; Darin J. Law; C. Ellery Mayence; Ali Abdullahi; Elizabeth A. Leger; Nelmarie Saayman; Eric W. Seabloom; Peter J. Golos; Suanne Jane Milton; Juan Lorite; Shauna M. Uselman; Todd E. Erickson; Katharine L. Stuble; Scott D. Wilson; Elizabeth A. Ballenger; Philip J. Burton; Claire E. Wainwright;Restoration of degraded drylands is urgently needed to mitigate climate change, reverse desertification and secure livelihoods for the two billion people who live in these areas. Bold global targets have been set for dryland restoration to restore millions of hectares of degraded land. These targets have been questioned as overly ambitious, but without a global evaluation of successes and failures it is impossible to gauge feasibility. Here we examine restoration seeding outcomes across 174 sites on six continents, encompassing 594,065 observations of 671 plant species. Our findings suggest reasons for optimism. Seeding had a positive impact on species presence: in almost a third of all treatments, 100% of species seeded were growing at first monitoring. However, dryland restoration is risky: 17% of projects failed, with no establishment of any seeded species, and consistent declines were found in seeded species as projects matured. Across projects, higher seeding rates and larger seed sizes resulted in a greater probability of recruitment, with further influences on species success including site aridity, taxonomic identity and species life form. Our findings suggest that investigations examining these predictive factors will yield more effective and informed restoration decision-making.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTANature Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-021-01510-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 130 citations 130 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 87visibility views 87 download downloads 374 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTANature Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-021-01510-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Springer Science and Business Media LLC Magda Garbowski; Carla M. Burton; Lauren M. Porensky; Sandra Dullau; Jeremy J. James; Monica L. Pokorny; Lauren N. Svejcar; Eman Calleja; Carina Becker; Matt A. Bahm; Réka Kiss; Nancy Shackelford; Nancy Shackelford; Megan Wong; Péter Török; Seth M. Munson; Hannah L. Farrell; Jose A. Navarro-Cano; Jayne Jonas-Bratten; Erin K. Espeland; Manuel Esteban Lucas-Borja; Martin F. Breed; Kari E. Veblen; Qinfeng Guo; Gustavo Brant Paterno; Gustavo Brant Paterno; Kirk W. Davies; Thomas A. Monaco; Patricia M. Holmes; Julie E. Larson; Barry Heydenrych; Orsolya Valkó; Peter A. Harrison; Matthew J. Rinella; Kevin Z. Mganga; Penelope A. Grey; Pablo Luis Peri; R. Emiliano Quiroga; Arlee M. Montalvo; Enrique G. de la Riva; Stephen E. Fick; Anita Kirmer; Tamás Miglécz; Zhiwei Xu; Jessica Drake; Daniel E. Winkler; Joshua Eldridge; Balázs Deák; Chad S. Boyd; Nichole N. Barger; Akasha M. Faist; Alex Caruana; Katharine L. Suding; Katharine L. Suding; Peter J. Carrick; Tina Parkhurst; Owen W. Baughman; Charlie D. Clements; Andrea T. Kramer; Mark W. Paschke; Merilynn C. Schantz; Luis Merino-Martín; Michael F. Curran; Darin J. Law; C. Ellery Mayence; Ali Abdullahi; Elizabeth A. Leger; Nelmarie Saayman; Eric W. Seabloom; Peter J. Golos; Suanne Jane Milton; Juan Lorite; Shauna M. Uselman; Todd E. Erickson; Katharine L. Stuble; Scott D. Wilson; Elizabeth A. Ballenger; Philip J. Burton; Claire E. Wainwright;Restoration of degraded drylands is urgently needed to mitigate climate change, reverse desertification and secure livelihoods for the two billion people who live in these areas. Bold global targets have been set for dryland restoration to restore millions of hectares of degraded land. These targets have been questioned as overly ambitious, but without a global evaluation of successes and failures it is impossible to gauge feasibility. Here we examine restoration seeding outcomes across 174 sites on six continents, encompassing 594,065 observations of 671 plant species. Our findings suggest reasons for optimism. Seeding had a positive impact on species presence: in almost a third of all treatments, 100% of species seeded were growing at first monitoring. However, dryland restoration is risky: 17% of projects failed, with no establishment of any seeded species, and consistent declines were found in seeded species as projects matured. Across projects, higher seeding rates and larger seed sizes resulted in a greater probability of recruitment, with further influences on species success including site aridity, taxonomic identity and species life form. Our findings suggest that investigations examining these predictive factors will yield more effective and informed restoration decision-making.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTANature Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-021-01510-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 130 citations 130 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 87visibility views 87 download downloads 374 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTANature Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-021-01510-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:Wiley Funded by:NSF | OPUS: Recovery, resilienc...NSF| OPUS: Recovery, resilience and the ecology of changeKatharine N. Suding; Courtney G. Collins; Lauren M. Hallett; Loralee Larios; Laurel M. Brigham; Joan Dudney; Emily C. Farrer; Julie E. Larson; Nancy Shackelford; Marko J. Spasojevic;doi: 10.1002/ecy.4322
pmid: 39014865
AbstractAccompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant–plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external‐driver internal‐topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/40z9j02qData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/40z9j02qData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:Wiley Funded by:NSF | OPUS: Recovery, resilienc...NSF| OPUS: Recovery, resilience and the ecology of changeKatharine N. Suding; Courtney G. Collins; Lauren M. Hallett; Loralee Larios; Laurel M. Brigham; Joan Dudney; Emily C. Farrer; Julie E. Larson; Nancy Shackelford; Marko J. Spasojevic;doi: 10.1002/ecy.4322
pmid: 39014865
AbstractAccompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant–plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external‐driver internal‐topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/40z9j02qData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/40z9j02qData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Springer Science and Business Media LLC Magda Garbowski; Carla M. Burton; Lauren M. Porensky; Sandra Dullau; Jeremy J. James; Monica L. Pokorny; Lauren N. Svejcar; Eman Calleja; Carina Becker; Matt A. Bahm; Réka Kiss; Nancy Shackelford; Nancy Shackelford; Megan Wong; Péter Török; Seth M. Munson; Hannah L. Farrell; Jose A. Navarro-Cano; Jayne Jonas-Bratten; Erin K. Espeland; Manuel Esteban Lucas-Borja; Martin F. Breed; Kari E. Veblen; Qinfeng Guo; Gustavo Brant Paterno; Gustavo Brant Paterno; Kirk W. Davies; Thomas A. Monaco; Patricia M. Holmes; Julie E. Larson; Barry Heydenrych; Orsolya Valkó; Peter A. Harrison; Matthew J. Rinella; Kevin Z. Mganga; Penelope A. Grey; Pablo Luis Peri; R. Emiliano Quiroga; Arlee M. Montalvo; Enrique G. de la Riva; Stephen E. Fick; Anita Kirmer; Tamás Miglécz; Zhiwei Xu; Jessica Drake; Daniel E. Winkler; Joshua Eldridge; Balázs Deák; Chad S. Boyd; Nichole N. Barger; Akasha M. Faist; Alex Caruana; Katharine L. Suding; Katharine L. Suding; Peter J. Carrick; Tina Parkhurst; Owen W. Baughman; Charlie D. Clements; Andrea T. Kramer; Mark W. Paschke; Merilynn C. Schantz; Luis Merino-Martín; Michael F. Curran; Darin J. Law; C. Ellery Mayence; Ali Abdullahi; Elizabeth A. Leger; Nelmarie Saayman; Eric W. Seabloom; Peter J. Golos; Suanne Jane Milton; Juan Lorite; Shauna M. Uselman; Todd E. Erickson; Katharine L. Stuble; Scott D. Wilson; Elizabeth A. Ballenger; Philip J. Burton; Claire E. Wainwright;Restoration of degraded drylands is urgently needed to mitigate climate change, reverse desertification and secure livelihoods for the two billion people who live in these areas. Bold global targets have been set for dryland restoration to restore millions of hectares of degraded land. These targets have been questioned as overly ambitious, but without a global evaluation of successes and failures it is impossible to gauge feasibility. Here we examine restoration seeding outcomes across 174 sites on six continents, encompassing 594,065 observations of 671 plant species. Our findings suggest reasons for optimism. Seeding had a positive impact on species presence: in almost a third of all treatments, 100% of species seeded were growing at first monitoring. However, dryland restoration is risky: 17% of projects failed, with no establishment of any seeded species, and consistent declines were found in seeded species as projects matured. Across projects, higher seeding rates and larger seed sizes resulted in a greater probability of recruitment, with further influences on species success including site aridity, taxonomic identity and species life form. Our findings suggest that investigations examining these predictive factors will yield more effective and informed restoration decision-making.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTANature Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-021-01510-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 130 citations 130 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 87visibility views 87 download downloads 374 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTANature Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-021-01510-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Springer Science and Business Media LLC Magda Garbowski; Carla M. Burton; Lauren M. Porensky; Sandra Dullau; Jeremy J. James; Monica L. Pokorny; Lauren N. Svejcar; Eman Calleja; Carina Becker; Matt A. Bahm; Réka Kiss; Nancy Shackelford; Nancy Shackelford; Megan Wong; Péter Török; Seth M. Munson; Hannah L. Farrell; Jose A. Navarro-Cano; Jayne Jonas-Bratten; Erin K. Espeland; Manuel Esteban Lucas-Borja; Martin F. Breed; Kari E. Veblen; Qinfeng Guo; Gustavo Brant Paterno; Gustavo Brant Paterno; Kirk W. Davies; Thomas A. Monaco; Patricia M. Holmes; Julie E. Larson; Barry Heydenrych; Orsolya Valkó; Peter A. Harrison; Matthew J. Rinella; Kevin Z. Mganga; Penelope A. Grey; Pablo Luis Peri; R. Emiliano Quiroga; Arlee M. Montalvo; Enrique G. de la Riva; Stephen E. Fick; Anita Kirmer; Tamás Miglécz; Zhiwei Xu; Jessica Drake; Daniel E. Winkler; Joshua Eldridge; Balázs Deák; Chad S. Boyd; Nichole N. Barger; Akasha M. Faist; Alex Caruana; Katharine L. Suding; Katharine L. Suding; Peter J. Carrick; Tina Parkhurst; Owen W. Baughman; Charlie D. Clements; Andrea T. Kramer; Mark W. Paschke; Merilynn C. Schantz; Luis Merino-Martín; Michael F. Curran; Darin J. Law; C. Ellery Mayence; Ali Abdullahi; Elizabeth A. Leger; Nelmarie Saayman; Eric W. Seabloom; Peter J. Golos; Suanne Jane Milton; Juan Lorite; Shauna M. Uselman; Todd E. Erickson; Katharine L. Stuble; Scott D. Wilson; Elizabeth A. Ballenger; Philip J. Burton; Claire E. Wainwright;Restoration of degraded drylands is urgently needed to mitigate climate change, reverse desertification and secure livelihoods for the two billion people who live in these areas. Bold global targets have been set for dryland restoration to restore millions of hectares of degraded land. These targets have been questioned as overly ambitious, but without a global evaluation of successes and failures it is impossible to gauge feasibility. Here we examine restoration seeding outcomes across 174 sites on six continents, encompassing 594,065 observations of 671 plant species. Our findings suggest reasons for optimism. Seeding had a positive impact on species presence: in almost a third of all treatments, 100% of species seeded were growing at first monitoring. However, dryland restoration is risky: 17% of projects failed, with no establishment of any seeded species, and consistent declines were found in seeded species as projects matured. Across projects, higher seeding rates and larger seed sizes resulted in a greater probability of recruitment, with further influences on species success including site aridity, taxonomic identity and species life form. Our findings suggest that investigations examining these predictive factors will yield more effective and informed restoration decision-making.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTANature Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-021-01510-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 130 citations 130 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 87visibility views 87 download downloads 374 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTANature Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-021-01510-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu