- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Report 2019 AustraliaPublisher:MDPI AG Authors: Amir Mosavi; Abdullah Bahmani;Machine learning (ML) methods has recently contributed very well in the advancement of the prediction models used for energy consumption. Such models highly improve the accuracy, robustness, and precision and the generalization ability of the conventional time series forecasting tools. This article reviews the state of the art of machine learning models used in the general application of energy consumption. Through a novel search and taxonomy the most relevant literature in the field are classified according to the ML modeling technique, energy type, perdition type, and the application area. A comprehensive review of the literature identifies the major ML methods, their application and a discussion on the evaluation of their effectiveness in energy consumption prediction. This paper further makes a conclusion on the trend and the effectiveness of the ML models. As the result, this research reports an outstanding rise in the accuracy and an ever increasing performance of the prediction technologies using the novel hybrid and ensemble prediction models.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsReport . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201903.0131.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsReport . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201903.0131.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Embargo end date: 04 Apr 2019 AustraliaPublisher:MDPI AG Authors: Shahaboddin Shamshirband; Annamária R. Várkonyi-Kóczy; Mohsen Salimi; Sina Ardabili; +4 AuthorsShahaboddin Shamshirband; Annamária R. Várkonyi-Kóczy; Mohsen Salimi; Sina Ardabili; Amir Mosavi; Amir Mosavi; Amir Mosavi; Timon Rabczuk;Machine learning (ML) models have been widely used in the modeling, design and prediction in energy systems. During the past two decades, there has been a dramatic increase in the advancement and application of various types of ML models for energy systems. This paper presents the state of the art of ML models used in energy systems along with a novel taxonomy of models and applications. Through a novel methodology, ML models are identified and further classified according to the ML modeling technique, energy type, and application area. Furthermore, a comprehensive review of the literature leads to an assessment and performance evaluation of the ML models and their applications, and a discussion of the major challenges and opportunities for prospective research. This paper further concludes that there is an outstanding rise in the accuracy, robustness, precision and generalization ability of the ML models in energy systems using hybrid ML models. Hybridization is reported to be effective in the advancement of prediction models, particularly for renewable energy systems, e.g., solar energy, wind energy, and biofuels. Moreover, the energy demand prediction using hybrid models of ML have highly contributed to the energy efficiency and therefore energy governance and sustainability.
Oxford Brookes Unive... arrow_drop_down Oxford Brookes University: RADARArticle . 2019License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/cf4209da-3e4a-4216-8395-4b0d0278d9bd/1/energies-12-01301.pdfData sources: Oxford Brookes University: RADAROxford Brookes University: RADAROther literature type . 2019License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12071301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 394 citations 394 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 3visibility views 3 download downloads 38 Powered bymore_vert Oxford Brookes Unive... arrow_drop_down Oxford Brookes University: RADARArticle . 2019License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/cf4209da-3e4a-4216-8395-4b0d0278d9bd/1/energies-12-01301.pdfData sources: Oxford Brookes University: RADAROxford Brookes University: RADAROther literature type . 2019License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12071301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Authors: Hong Wang; Khalid A. Alattas; Ardashir Mohammadzadeh; Mohammad Hosein Sabzalian; +2 AuthorsHong Wang; Khalid A. Alattas; Ardashir Mohammadzadeh; Mohammad Hosein Sabzalian; Ayman A. Aly; Amir Mosavi;Dans ce document, un examen complet est présenté pour les prévisions de charge à moyen terme. Les charges de base et les facteurs effectifs sont étudiés, puis plusieurs classifications sont présentées pour les approches de prévision. Les principaux avantages et inconvénients des approches sont analysés. Les approches basées sur le neuro-fuzzy sont étudiées plus en détail, et leurs limites sont étudiées. Enfin, certains aspects sont présentés dans l'utilisation de systèmes neurotoxiques pour la prévision de charge. Les principales contributions sont les suivantes : (1) Une revue complète est présentée de sorte que les méthodes classiques et les nouvelles approches neuro-fuzzy sont étudiées. (2) Les méthodes de base sont étudiées en détail, et leurs réalisations et inconvénients sont discutés. (3) Certains modèles et suggestions sont présentés pour de futures applications pratiques. (4) Certaines catégories sont introduites pour une meilleure évaluation de diverses méthodes. En este documento, se presenta una revisión exhaustiva para la previsión de la carga a medio plazo. Se estudian las cargas básicas y los factores efectivos, y luego se presentan varias clasificaciones para los enfoques de pronóstico. Se analizan las principales ventajas e inconvenientes de los enfoques. Los enfoques basados en neurofuzzy se investigan con más detalle y se estudian sus limitaciones. Finalmente, se presentan algunos aspectos en el uso de sistemas neuro-fuzzy para el pronóstico de carga. Las principales contribuciones son que: (1) Se presenta una revisión exhaustiva de tal manera que se investigan tanto los métodos clásicos como los nuevos enfoques neurofuzzy. (2) Los métodos básicos se estudian en detalle y se discuten sus logros e inconvenientes. (3) Se presentan algunos modelos y sugerencias para futuras aplicaciones prácticas. (4) Se introducen algunas categorías para una mejor evaluación de varios métodos. In this paper, a comprehensive review is presented for mid-term load forecasting. The basic loads and effective factors are studied, and then several classifications are presented for forecasting approaches. The main advantages and drawbacks of the approaches are analyzed. The neuro-fuzzy-based approaches are investigated in more detail, and their limitations are studied. Finally, some aspects are presented in the use of neuro-fuzzy systems for load forecasting. The main contributions are that: (1) A comprehensive review is presented such that both classical methods and new neuro-fuzzy approaches are investigated. (2) The basic methods are studied in details, and their achievements and drawbacks are discussed. (3) Some models and suggestions are presented for future practical applications. (4) Some categories are introduced for better evaluation of various methods. في هذه الورقة، يتم تقديم مراجعة شاملة للتنبؤ بالحمل في منتصف المدة. تتم دراسة الأحمال الأساسية والعوامل الفعالة، ثم يتم تقديم العديد من التصنيفات لنهج التنبؤ. يتم تحليل المزايا والعيوب الرئيسية للنهج. يتم التحقيق في الأساليب العصبية الضبابية بمزيد من التفصيل، ويتم دراسة حدودها. أخيرًا، يتم تقديم بعض الجوانب في استخدام الأنظمة العصبية الغامضة للتنبؤ بالأحمال. المساهمات الرئيسية هي: (1) يتم تقديم مراجعة شاملة بحيث يتم التحقيق في كل من الأساليب الكلاسيكية والمناهج العصبية الجديدة. (2) يتم دراسة الأساليب الأساسية بالتفصيل، ومناقشة إنجازاتها وعيوبها. (3) يتم تقديم بعض النماذج والاقتراحات للتطبيقات العملية المستقبلية. (4) يتم تقديم بعض الفئات لتقييم أفضل للطرق المختلفة.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.10.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.10.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Mahsa Dehghan Manshadi; Majid Ghassemi; Seyed Milad Mousavi; Amir H. Mosavi; Levente Kovacs;doi: 10.3390/en14164867
From conventional turbines to cutting-edge bladeless turbines, energy harvesting from wind has been well explored by researchers for more than a century. The vortex bladeless wind turbine (VBT) is considered an advanced design that alternatively harvests energy from oscillation. This research investigates enhancing the output electrical power of VBT through simulation of the fluid–solid interactions (FSI), leading to a comprehensive dataset for predicting procedure and optimal design. Hence, the long short-term memory (LSTM) method, due to its time-series prediction accuracy, is proposed to model the power of VBT from the collected data. To find the relationship between the parameters and the variables used in this research, a correlation matrix is further presented. According to the value of 0.3 for the root mean square error (RMSE), a comparative analysis between the simulation results and their predictions indicates that the LSTM method is suitable for modeling. Furthermore, the LSTM method has significantly reduced the computation time so that the prediction time of desired values has been reduced from an average of two and a half hours to two minutes. In addition, one of the most important achievements of this study is to suggest a mathematical relation of output power, which helps to extend it in different sizes of VBT with a high range of parameter variations.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/16/4867/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/16/4867/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021 Italy, NorwayPublisher:Institute of Electrical and Electronics Engineers (IEEE) Asheq Rahman; Md. Jahidul Islam; Antonio Montieri; Mostofa Kamal Nasir; Md. Mahfuz Reza; Shahab S. Band; Antonio Pescapè; Mahedi Hasan; Mehdi Sookhak; Amir Mosavi;handle: 11588/876185 , 11250/2831173
Le Software-Defined Networking (SDN) et la Blockchain sont des technologies de pointe utilisées dans le monde entier pour établir une communication réseau sécurisée ainsi que pour construire des infrastructures réseau sécurisées. Ils fournissent une plate-forme robuste et fiable pour faire face aux menaces et aux défis tels que la sécurité, la confidentialité, la flexibilité, l'évolutivité et la confidentialité. Poussé par ces hypothèses, cet article présente un cadre IoT défini par logiciel optimisé, efficace sur le plan énergétique et sécurisé basé sur la Blockchain pour les réseaux intelligents. En effet, les technologies SDN et Blockchain se sont avérées capables de gérer de manière appropriée l'utilisation des ressources et de développer une communication réseau sécurisée dans l'écosystème IoT. Cependant, il y a un manque de travaux de recherche qui présentent une définition complète d'un tel cadre qui peut répondre aux exigences de l'écosystème IoT (c'est-à-dire une utilisation efficace de l'énergie et un retard de bout en bout réduit). Par conséquent, dans cette recherche, nous présentons une architecture hiérarchique en couches pour le déploiement d'un cadre SDN-IoT distribué mais efficace, compatible Blockchain, qui assure une sélection efficace des têtes de cluster et une communication réseau sécurisée via l'identification et l'isolation des commutateurs rouges. En outre, l'enregistrement des règles de flux compatibles Blockchain garde une trace des règles appliquées dans les commutateurs et maintient la cohérence au sein du cluster de contrôleurs. Enfin, nous évaluons les performances du cadre proposé dans un environnement de simulation et montrons qu'il peut optimiser l'utilisation de l'énergie, le retard de bout en bout et le débit par rapport aux lignes de base considérées, permettant ainsi d'atteindre l'efficacité et la sécurité dans le réseau intelligent. Las redes definidas por software (SDN) y Blockchain son tecnologías líderes utilizadas en todo el mundo para establecer una comunicación de red segura, así como para construir infraestructuras de red seguras. Proporcionan una plataforma sólida y confiable para abordar amenazas y enfrentar desafíos como la seguridad, la privacidad, la flexibilidad, la escalabilidad y la confidencialidad. Impulsado por estos supuestos, este documento presenta un marco optimizado de IoT definido por software basado en Blockchain y energéticamente eficiente para redes inteligentes. De hecho, las tecnologías SDN y Blockchain han demostrado ser capaces de gestionar adecuadamente la utilización de recursos y desarrollar una comunicación de red segura en todo el ecosistema de IoT. Sin embargo, faltan trabajos de investigación que presenten una definición integral de dicho marco que pueda cumplir con los requisitos del ecosistema de IoT (es decir, la utilización eficiente de la energía y la reducción del retraso de extremo a extremo). Por lo tanto, en esta investigación, presentamos una arquitectura jerárquica en capas para el despliegue de un marco SDN-IoT distribuido pero eficiente habilitado para Blockchain que garantiza una selección eficiente de la cabeza del clúster y una comunicación de red segura a través de la identificación y el aislamiento de los switches rouge. Además, el registro de reglas de flujo habilitado para Blockchain realiza un seguimiento de las reglas aplicadas en los switches y mantiene la consistencia dentro del clúster del controlador. Finalmente, evaluamos el rendimiento del marco propuesto en un entorno de simulación y demostramos que puede lograr una utilización optimizada de la energía, un retraso de extremo a extremo y un rendimiento en comparación con las líneas de base consideradas, pudiendo así lograr eficiencia y seguridad en la red inteligente. Software-Defined Networking (SDN) and Blockchain are leading technologies used worldwide to establish safe network communication as well as build secure network infrastructures. They provide a robust and reliable platform to address threats and face challenges such as security, privacy, flexibility, scalability, and confidentiality. Driven by these assumptions, this paper presents an optimized energy-efficient and secure Blockchain-based software-defined IoT framework for smart networks. Indeed, SDN and Blockchain technologies have proven to be able to suitably manage resource utilization and to develop secure network communication across the IoT ecosystem. However, there is a lack of research works that present a comprehensive definition of such a framework that can meet the requirements of the IoT ecosystem (i.e. efficient energy utilization and reduced end-to-end delay). Therefore, in this research, we present a layered hierarchical architecture for the deployment of a distributed yet efficient Blockchain-enabled SDN-IoT framework that ensures efficient cluster-head selection and secure network communication via the identification and isolation of rouge switches. Besides, the Blockchain-enabled flow-rules record keeps track of the rules enforced in the switches and maintains the consistency within the controller cluster. Finally, we assess the performance of the proposed framework in a simulation environment and show that it can achieve optimized energy-utilization, end-to-end delay, and throughput compared to considered baselines, thus being able to achieve efficiency and security in the smart network. تعد الشبكات المعرفة بالبرمجيات (SDN) وسلسلة الكتل (Blockchain) من التقنيات الرائدة المستخدمة في جميع أنحاء العالم لإنشاء اتصالات آمنة للشبكة بالإضافة إلى بناء بنى تحتية آمنة للشبكة. فهي توفر منصة قوية وموثوقة لمواجهة التهديدات ومواجهة التحديات مثل الأمن والخصوصية والمرونة وقابلية التوسع والسرية. وانطلاقًا من هذه الافتراضات، تقدم هذه الورقة البحثية إطارًا محسّنًا موفرًا للطاقة وآمنًا لإنترنت الأشياء للشبكات الذكية قائمًا على برامج البلوك تشين. في الواقع، أثبتت تقنيات SDN و Blockchain أنها قادرة على إدارة استخدام الموارد بشكل مناسب وتطوير اتصالات شبكة آمنة عبر النظام البيئي لإنترنت الأشياء. ومع ذلك، هناك نقص في الأعمال البحثية التي تقدم تعريفًا شاملاً لمثل هذا الإطار الذي يمكن أن يلبي متطلبات النظام البيئي لإنترنت الأشياء (أي الاستخدام الفعال للطاقة وتقليل التأخير من البداية إلى النهاية). لذلك، في هذا البحث، نقدم بنية هرمية متعددة الطبقات لنشر إطار SDN - IoT الموزع والفعال في الوقت نفسه والذي يضمن الاختيار الفعال لرأس المجموعة والاتصال الآمن بالشبكة عبر تحديد وعزل مفاتيح الحمر. إلى جانب ذلك، فإن سجل قواعد التدفق الذي يدعم البلوك تشين يتتبع القواعد المفروضة في المفاتيح ويحافظ على الاتساق داخل مجموعة التحكم. أخيرًا، نقوم بتقييم أداء الإطار المقترح في بيئة محاكاة ونظهر أنه يمكنه تحقيق الاستخدام الأمثل للطاقة والتأخير من البداية إلى النهاية والإنتاجية مقارنة بخطوط الأساس المدروسة، وبالتالي القدرة على تحقيق الكفاءة والأمن في الشبكة الذكية.
Archivio della ricer... arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIArticle . 2021License: CC BY NC SAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3058244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 101 citations 101 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIArticle . 2021License: CC BY NC SAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3058244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2020Embargo end date: 01 Jan 2020Publisher:Elsevier BV Authors: Saeed Nosratabadi; Gergo Pinter; Amir Mosavi; Sandor Semperger;Sustainability has become one of the challenges of today’s banks. Since sustainable business models are responsible for the environment and society along with generating economic benefits, they are an attractive approach to sustainability. Sustainable business models also offer banks competitive advantages such as increasing brand reputation and cost reduction. However, no framework is presented to evaluate the sustainability of banking business models. To bridge this theoretical gap, the current study using A Delphi-Analytic Hierarchy Process method, firstly, developed a sustainable business model to evaluate the sustainability of the business model of banks. In the second step, the sustainability performance of sixteen banks from eight European countries including Norway, The UK, Poland, Hungary, Germany, France, Spain, and Italy, assessed. The proposed business model components of this study were ranked in terms of their impact on achieving sustainability goals. Consequently, the proposed model components of this study, based on their impact on sustainability, are respectively value proposition, core competencies, financial aspects, business processes, target customers, resources, technology, customer interface, and partner network. The results of the comparison of the banks studied by each country disclosed that the sustainability of the Norwegian and German banks’ business models is higher than in other counties. The studied banks of Hungary and Spain came in second, the banks of The UK, Poland, and France ranked third, and finally, the Italian banks ranked fourth in the sustainability of their business models.
SSRN Electronic Jour... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3556704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 27 Powered bymore_vert SSRN Electronic Jour... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3556704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Guodao Zhang; Shahab S. Band; Changhyun Jun; Sayed M. Bateni; Huan-Ming Chuang; Hamza Turabieh; Majdi Mafarja; Amir Mosavi; Massoud Moslehpour;Solar radiation (SR) is considered as a critical factor in determining energy management. In this research, the potential of the Bayesian averaging model (BMA) was investigated for estimating monthly SR. The inputs were monthly average temperature, wind speed, relative humidity, and sunshine duration. The BMA model was employed to estimate SR by extracting information from multiple adaptive neuro-fuzzy systems (ANFIS) and multi-layer perceptron (MLP) models. In this study, Archimedes optimization algorithm (AOA), particle swarm optimization (PSO), genetic algorithm (GA), and bat algorithm (BA) were used to tune the parameters of the ANIFS and MLP. In addition, a multitude of error indices such as root mean square error (RMSE), and Nash Sutcliff efficiency (NSE), and several graphical tools were used to investigate the accuracy of the models. The results showed the better performance of the BMA model than other models for estimating solar radiation. For example, BMA with RMSE of 6.78, MAE of 5.25, and NSE of 0.96 had the best accuracy in the training stage of the Tabriz station. On the other hand, in the testing level of Tehran station, BMA (RMSE=7.89 MJ/ m2, MAE=6.89 MJ/ m2, NSE=0.95) gave the best accuracy, and the MLP model (RMSE= 14.12 MJ/ m2, MAE=12.23 MJ/ m2, and NSE=0.77) gave the worst performance, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.10.117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.10.117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of), Hong Kong, China (People's Republic of)Publisher:Informa UK Limited Lixuesong Han; Amir Mosavi; Amir Mosavi; Amir Mosavi; Shahab S. Band; Rasool Kalbasi; Kwok Wing Chau; Dariush Bahrami; Mehdi Jahangiri; Chenji Lu; Arash Karimipour; Alexei Yumashev;handle: 10397/97737
In this study, the effects of adding trapezoidal ribs to microchannel on functionalized multi-walled nano-tubes/water nanofluid heat transfer are examined. The dimensionless slip coefficient (0–0.1), Reynolds number (50–400) and Hartmann number (0–20) are considered as independent variables and the heat transfer along with the entropy generation are considered as the output parameters. The simulation outcomes confirm that the addition of trapezoidal ribs, on the one hand, increases the heat transfer area and, on the other hand, intensifies the possibility of vortex formation. The presence of a vortex decreases the heat transfer potential and thus reduces the performance of the trapezoidal-wall microchannel compared to the base one. With increasing Reynolds number (Re), the probability of vortex formation intensifies, which in turn diminishes the positive effects of using trapezoidal ribs. However, it is found that, with increasing Hartmann number (Ha) and dimensionless slip coefficient $ ({{\beta^\ast }} ) $ , the vortex strength is weakened, and consequently heat transfer is improved. Based on numerical computations, it is found that at Re = 400, Ha = 0 and $ {\beta ^\ast } $ = 0 and adding trapezoidal ribs to the base microchannel increases heat transfer by 11.12%.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/97737Data sources: Bielefeld Academic Search Engine (BASE)Engineering Applications of Computational Fluid MechanicsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEngineering Applications of Computational Fluid MechanicsArticleLicense: CC BYData sources: UnpayWallEngineering Applications of Computational Fluid MechanicsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19942060.2021.1984991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/97737Data sources: Bielefeld Academic Search Engine (BASE)Engineering Applications of Computational Fluid MechanicsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEngineering Applications of Computational Fluid MechanicsArticleLicense: CC BYData sources: UnpayWallEngineering Applications of Computational Fluid MechanicsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19942060.2021.1984991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal , Preprint 2021Publisher:MDPI AG Authors: Hossein Moayedi; Amir Mosavi;Early prediction of thermal loads plays an essential role in analyzing energy-efficient buildings’ energy performance. On the other hand, stochastic algorithms have recently shown high proficiency in dealing with this issue. These are the reasons that this study is dedicated to evaluating an innovative hybrid method for predicting the cooling load (CL) in buildings with residential usage. The proposed model is a combination of artificial neural networks and stochastic fractal search (SFS–ANNs). Two benchmark algorithms, namely the grasshopper optimization algorithm (GOA) and firefly algorithm (FA) are also considered to be compared with the SFS. The non-linear effect of eight independent factors on the CL is analyzed using each model’s optimal structure. Evaluation of the results outlined that all three metaheuristic algorithms (with more than 90% correlation) can adequately optimize the ANN. In this regard, this tool’s prediction error declined by nearly 23%, 18%, and 36% by applying the GOA, FA, and SFS techniques. Moreover, all used accuracy criteria indicated the superiority of the SFS over the benchmark schemes. Therefore, it is inferred that utilizing the SFS along with ANN provides a reliable hybrid model for the early prediction of CL.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/6/1649/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/6/1649/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2019 SpainPublisher:MDPI AG Annamária R. Várkonyi-Kóczy; Farshid Aram; Ester Higueras García; Amir Mosavi; Amir Mosavi; Amir Mosavi; Ebrahim Solgi;This empirical study investigates large urban park cooling effects on the thermal comfort of occupants in the vicinity of the main central park, located in Madrid, Spain. Data were gathered during hot summer days, using mobile observations and a questionnaire. The results showed that the cooling effect of this urban park of 140 ha area at a distance of 150 m is able to reduce temperature by an average of 0.63°C and 1.28°C for distances of 380 m and of 665 meters from the park. Moreover, the degree of the Physiological Equivalent Temperature (PET) index at a distance of 150 meters from the park is on average 2°C PET and 2.3°C PET less compared to distances of 380 m and 665 m, respectively. Considering distance from the park, the correlation between occupant Perceived Thermal Comfort (PTC) and PET is inverse. That is, augmenting the distance from park increases PET, while the extent of PTC reduces accordingly. The correlation between these two factors at the nearest and furthest distances from the park is meaningful (P-value <0/05). The results also showed that large-scale urban parks generally play a significant part in creating a cognitive state of high-perceived thermal comfort spaces for residents.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3904/pdfData sources: Multidisciplinary Digital Publishing InstituteOxford Brookes University: RADARArticle . 2019License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/4d427829-449b-4cde-809c-0951b799f897/1/energies-12-03904.pdfData sources: Oxford Brookes University: RADARhttps://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAOxford Brookes University: RADAROther literature type . 2019License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201909.0155.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3904/pdfData sources: Multidisciplinary Digital Publishing InstituteOxford Brookes University: RADARArticle . 2019License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/4d427829-449b-4cde-809c-0951b799f897/1/energies-12-03904.pdfData sources: Oxford Brookes University: RADARhttps://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAOxford Brookes University: RADAROther literature type . 2019License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201909.0155.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Report 2019 AustraliaPublisher:MDPI AG Authors: Amir Mosavi; Abdullah Bahmani;Machine learning (ML) methods has recently contributed very well in the advancement of the prediction models used for energy consumption. Such models highly improve the accuracy, robustness, and precision and the generalization ability of the conventional time series forecasting tools. This article reviews the state of the art of machine learning models used in the general application of energy consumption. Through a novel search and taxonomy the most relevant literature in the field are classified according to the ML modeling technique, energy type, perdition type, and the application area. A comprehensive review of the literature identifies the major ML methods, their application and a discussion on the evaluation of their effectiveness in energy consumption prediction. This paper further makes a conclusion on the trend and the effectiveness of the ML models. As the result, this research reports an outstanding rise in the accuracy and an ever increasing performance of the prediction technologies using the novel hybrid and ensemble prediction models.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsReport . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201903.0131.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsReport . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201903.0131.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Embargo end date: 04 Apr 2019 AustraliaPublisher:MDPI AG Authors: Shahaboddin Shamshirband; Annamária R. Várkonyi-Kóczy; Mohsen Salimi; Sina Ardabili; +4 AuthorsShahaboddin Shamshirband; Annamária R. Várkonyi-Kóczy; Mohsen Salimi; Sina Ardabili; Amir Mosavi; Amir Mosavi; Amir Mosavi; Timon Rabczuk;Machine learning (ML) models have been widely used in the modeling, design and prediction in energy systems. During the past two decades, there has been a dramatic increase in the advancement and application of various types of ML models for energy systems. This paper presents the state of the art of ML models used in energy systems along with a novel taxonomy of models and applications. Through a novel methodology, ML models are identified and further classified according to the ML modeling technique, energy type, and application area. Furthermore, a comprehensive review of the literature leads to an assessment and performance evaluation of the ML models and their applications, and a discussion of the major challenges and opportunities for prospective research. This paper further concludes that there is an outstanding rise in the accuracy, robustness, precision and generalization ability of the ML models in energy systems using hybrid ML models. Hybridization is reported to be effective in the advancement of prediction models, particularly for renewable energy systems, e.g., solar energy, wind energy, and biofuels. Moreover, the energy demand prediction using hybrid models of ML have highly contributed to the energy efficiency and therefore energy governance and sustainability.
Oxford Brookes Unive... arrow_drop_down Oxford Brookes University: RADARArticle . 2019License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/cf4209da-3e4a-4216-8395-4b0d0278d9bd/1/energies-12-01301.pdfData sources: Oxford Brookes University: RADAROxford Brookes University: RADAROther literature type . 2019License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12071301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 394 citations 394 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 3visibility views 3 download downloads 38 Powered bymore_vert Oxford Brookes Unive... arrow_drop_down Oxford Brookes University: RADARArticle . 2019License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/cf4209da-3e4a-4216-8395-4b0d0278d9bd/1/energies-12-01301.pdfData sources: Oxford Brookes University: RADAROxford Brookes University: RADAROther literature type . 2019License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12071301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Authors: Hong Wang; Khalid A. Alattas; Ardashir Mohammadzadeh; Mohammad Hosein Sabzalian; +2 AuthorsHong Wang; Khalid A. Alattas; Ardashir Mohammadzadeh; Mohammad Hosein Sabzalian; Ayman A. Aly; Amir Mosavi;Dans ce document, un examen complet est présenté pour les prévisions de charge à moyen terme. Les charges de base et les facteurs effectifs sont étudiés, puis plusieurs classifications sont présentées pour les approches de prévision. Les principaux avantages et inconvénients des approches sont analysés. Les approches basées sur le neuro-fuzzy sont étudiées plus en détail, et leurs limites sont étudiées. Enfin, certains aspects sont présentés dans l'utilisation de systèmes neurotoxiques pour la prévision de charge. Les principales contributions sont les suivantes : (1) Une revue complète est présentée de sorte que les méthodes classiques et les nouvelles approches neuro-fuzzy sont étudiées. (2) Les méthodes de base sont étudiées en détail, et leurs réalisations et inconvénients sont discutés. (3) Certains modèles et suggestions sont présentés pour de futures applications pratiques. (4) Certaines catégories sont introduites pour une meilleure évaluation de diverses méthodes. En este documento, se presenta una revisión exhaustiva para la previsión de la carga a medio plazo. Se estudian las cargas básicas y los factores efectivos, y luego se presentan varias clasificaciones para los enfoques de pronóstico. Se analizan las principales ventajas e inconvenientes de los enfoques. Los enfoques basados en neurofuzzy se investigan con más detalle y se estudian sus limitaciones. Finalmente, se presentan algunos aspectos en el uso de sistemas neuro-fuzzy para el pronóstico de carga. Las principales contribuciones son que: (1) Se presenta una revisión exhaustiva de tal manera que se investigan tanto los métodos clásicos como los nuevos enfoques neurofuzzy. (2) Los métodos básicos se estudian en detalle y se discuten sus logros e inconvenientes. (3) Se presentan algunos modelos y sugerencias para futuras aplicaciones prácticas. (4) Se introducen algunas categorías para una mejor evaluación de varios métodos. In this paper, a comprehensive review is presented for mid-term load forecasting. The basic loads and effective factors are studied, and then several classifications are presented for forecasting approaches. The main advantages and drawbacks of the approaches are analyzed. The neuro-fuzzy-based approaches are investigated in more detail, and their limitations are studied. Finally, some aspects are presented in the use of neuro-fuzzy systems for load forecasting. The main contributions are that: (1) A comprehensive review is presented such that both classical methods and new neuro-fuzzy approaches are investigated. (2) The basic methods are studied in details, and their achievements and drawbacks are discussed. (3) Some models and suggestions are presented for future practical applications. (4) Some categories are introduced for better evaluation of various methods. في هذه الورقة، يتم تقديم مراجعة شاملة للتنبؤ بالحمل في منتصف المدة. تتم دراسة الأحمال الأساسية والعوامل الفعالة، ثم يتم تقديم العديد من التصنيفات لنهج التنبؤ. يتم تحليل المزايا والعيوب الرئيسية للنهج. يتم التحقيق في الأساليب العصبية الضبابية بمزيد من التفصيل، ويتم دراسة حدودها. أخيرًا، يتم تقديم بعض الجوانب في استخدام الأنظمة العصبية الغامضة للتنبؤ بالأحمال. المساهمات الرئيسية هي: (1) يتم تقديم مراجعة شاملة بحيث يتم التحقيق في كل من الأساليب الكلاسيكية والمناهج العصبية الجديدة. (2) يتم دراسة الأساليب الأساسية بالتفصيل، ومناقشة إنجازاتها وعيوبها. (3) يتم تقديم بعض النماذج والاقتراحات للتطبيقات العملية المستقبلية. (4) يتم تقديم بعض الفئات لتقييم أفضل للطرق المختلفة.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.10.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.10.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Mahsa Dehghan Manshadi; Majid Ghassemi; Seyed Milad Mousavi; Amir H. Mosavi; Levente Kovacs;doi: 10.3390/en14164867
From conventional turbines to cutting-edge bladeless turbines, energy harvesting from wind has been well explored by researchers for more than a century. The vortex bladeless wind turbine (VBT) is considered an advanced design that alternatively harvests energy from oscillation. This research investigates enhancing the output electrical power of VBT through simulation of the fluid–solid interactions (FSI), leading to a comprehensive dataset for predicting procedure and optimal design. Hence, the long short-term memory (LSTM) method, due to its time-series prediction accuracy, is proposed to model the power of VBT from the collected data. To find the relationship between the parameters and the variables used in this research, a correlation matrix is further presented. According to the value of 0.3 for the root mean square error (RMSE), a comparative analysis between the simulation results and their predictions indicates that the LSTM method is suitable for modeling. Furthermore, the LSTM method has significantly reduced the computation time so that the prediction time of desired values has been reduced from an average of two and a half hours to two minutes. In addition, one of the most important achievements of this study is to suggest a mathematical relation of output power, which helps to extend it in different sizes of VBT with a high range of parameter variations.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/16/4867/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/16/4867/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021 Italy, NorwayPublisher:Institute of Electrical and Electronics Engineers (IEEE) Asheq Rahman; Md. Jahidul Islam; Antonio Montieri; Mostofa Kamal Nasir; Md. Mahfuz Reza; Shahab S. Band; Antonio Pescapè; Mahedi Hasan; Mehdi Sookhak; Amir Mosavi;handle: 11588/876185 , 11250/2831173
Le Software-Defined Networking (SDN) et la Blockchain sont des technologies de pointe utilisées dans le monde entier pour établir une communication réseau sécurisée ainsi que pour construire des infrastructures réseau sécurisées. Ils fournissent une plate-forme robuste et fiable pour faire face aux menaces et aux défis tels que la sécurité, la confidentialité, la flexibilité, l'évolutivité et la confidentialité. Poussé par ces hypothèses, cet article présente un cadre IoT défini par logiciel optimisé, efficace sur le plan énergétique et sécurisé basé sur la Blockchain pour les réseaux intelligents. En effet, les technologies SDN et Blockchain se sont avérées capables de gérer de manière appropriée l'utilisation des ressources et de développer une communication réseau sécurisée dans l'écosystème IoT. Cependant, il y a un manque de travaux de recherche qui présentent une définition complète d'un tel cadre qui peut répondre aux exigences de l'écosystème IoT (c'est-à-dire une utilisation efficace de l'énergie et un retard de bout en bout réduit). Par conséquent, dans cette recherche, nous présentons une architecture hiérarchique en couches pour le déploiement d'un cadre SDN-IoT distribué mais efficace, compatible Blockchain, qui assure une sélection efficace des têtes de cluster et une communication réseau sécurisée via l'identification et l'isolation des commutateurs rouges. En outre, l'enregistrement des règles de flux compatibles Blockchain garde une trace des règles appliquées dans les commutateurs et maintient la cohérence au sein du cluster de contrôleurs. Enfin, nous évaluons les performances du cadre proposé dans un environnement de simulation et montrons qu'il peut optimiser l'utilisation de l'énergie, le retard de bout en bout et le débit par rapport aux lignes de base considérées, permettant ainsi d'atteindre l'efficacité et la sécurité dans le réseau intelligent. Las redes definidas por software (SDN) y Blockchain son tecnologías líderes utilizadas en todo el mundo para establecer una comunicación de red segura, así como para construir infraestructuras de red seguras. Proporcionan una plataforma sólida y confiable para abordar amenazas y enfrentar desafíos como la seguridad, la privacidad, la flexibilidad, la escalabilidad y la confidencialidad. Impulsado por estos supuestos, este documento presenta un marco optimizado de IoT definido por software basado en Blockchain y energéticamente eficiente para redes inteligentes. De hecho, las tecnologías SDN y Blockchain han demostrado ser capaces de gestionar adecuadamente la utilización de recursos y desarrollar una comunicación de red segura en todo el ecosistema de IoT. Sin embargo, faltan trabajos de investigación que presenten una definición integral de dicho marco que pueda cumplir con los requisitos del ecosistema de IoT (es decir, la utilización eficiente de la energía y la reducción del retraso de extremo a extremo). Por lo tanto, en esta investigación, presentamos una arquitectura jerárquica en capas para el despliegue de un marco SDN-IoT distribuido pero eficiente habilitado para Blockchain que garantiza una selección eficiente de la cabeza del clúster y una comunicación de red segura a través de la identificación y el aislamiento de los switches rouge. Además, el registro de reglas de flujo habilitado para Blockchain realiza un seguimiento de las reglas aplicadas en los switches y mantiene la consistencia dentro del clúster del controlador. Finalmente, evaluamos el rendimiento del marco propuesto en un entorno de simulación y demostramos que puede lograr una utilización optimizada de la energía, un retraso de extremo a extremo y un rendimiento en comparación con las líneas de base consideradas, pudiendo así lograr eficiencia y seguridad en la red inteligente. Software-Defined Networking (SDN) and Blockchain are leading technologies used worldwide to establish safe network communication as well as build secure network infrastructures. They provide a robust and reliable platform to address threats and face challenges such as security, privacy, flexibility, scalability, and confidentiality. Driven by these assumptions, this paper presents an optimized energy-efficient and secure Blockchain-based software-defined IoT framework for smart networks. Indeed, SDN and Blockchain technologies have proven to be able to suitably manage resource utilization and to develop secure network communication across the IoT ecosystem. However, there is a lack of research works that present a comprehensive definition of such a framework that can meet the requirements of the IoT ecosystem (i.e. efficient energy utilization and reduced end-to-end delay). Therefore, in this research, we present a layered hierarchical architecture for the deployment of a distributed yet efficient Blockchain-enabled SDN-IoT framework that ensures efficient cluster-head selection and secure network communication via the identification and isolation of rouge switches. Besides, the Blockchain-enabled flow-rules record keeps track of the rules enforced in the switches and maintains the consistency within the controller cluster. Finally, we assess the performance of the proposed framework in a simulation environment and show that it can achieve optimized energy-utilization, end-to-end delay, and throughput compared to considered baselines, thus being able to achieve efficiency and security in the smart network. تعد الشبكات المعرفة بالبرمجيات (SDN) وسلسلة الكتل (Blockchain) من التقنيات الرائدة المستخدمة في جميع أنحاء العالم لإنشاء اتصالات آمنة للشبكة بالإضافة إلى بناء بنى تحتية آمنة للشبكة. فهي توفر منصة قوية وموثوقة لمواجهة التهديدات ومواجهة التحديات مثل الأمن والخصوصية والمرونة وقابلية التوسع والسرية. وانطلاقًا من هذه الافتراضات، تقدم هذه الورقة البحثية إطارًا محسّنًا موفرًا للطاقة وآمنًا لإنترنت الأشياء للشبكات الذكية قائمًا على برامج البلوك تشين. في الواقع، أثبتت تقنيات SDN و Blockchain أنها قادرة على إدارة استخدام الموارد بشكل مناسب وتطوير اتصالات شبكة آمنة عبر النظام البيئي لإنترنت الأشياء. ومع ذلك، هناك نقص في الأعمال البحثية التي تقدم تعريفًا شاملاً لمثل هذا الإطار الذي يمكن أن يلبي متطلبات النظام البيئي لإنترنت الأشياء (أي الاستخدام الفعال للطاقة وتقليل التأخير من البداية إلى النهاية). لذلك، في هذا البحث، نقدم بنية هرمية متعددة الطبقات لنشر إطار SDN - IoT الموزع والفعال في الوقت نفسه والذي يضمن الاختيار الفعال لرأس المجموعة والاتصال الآمن بالشبكة عبر تحديد وعزل مفاتيح الحمر. إلى جانب ذلك، فإن سجل قواعد التدفق الذي يدعم البلوك تشين يتتبع القواعد المفروضة في المفاتيح ويحافظ على الاتساق داخل مجموعة التحكم. أخيرًا، نقوم بتقييم أداء الإطار المقترح في بيئة محاكاة ونظهر أنه يمكنه تحقيق الاستخدام الأمثل للطاقة والتأخير من البداية إلى النهاية والإنتاجية مقارنة بخطوط الأساس المدروسة، وبالتالي القدرة على تحقيق الكفاءة والأمن في الشبكة الذكية.
Archivio della ricer... arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIArticle . 2021License: CC BY NC SAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3058244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 101 citations 101 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIArticle . 2021License: CC BY NC SAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3058244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2020Embargo end date: 01 Jan 2020Publisher:Elsevier BV Authors: Saeed Nosratabadi; Gergo Pinter; Amir Mosavi; Sandor Semperger;Sustainability has become one of the challenges of today’s banks. Since sustainable business models are responsible for the environment and society along with generating economic benefits, they are an attractive approach to sustainability. Sustainable business models also offer banks competitive advantages such as increasing brand reputation and cost reduction. However, no framework is presented to evaluate the sustainability of banking business models. To bridge this theoretical gap, the current study using A Delphi-Analytic Hierarchy Process method, firstly, developed a sustainable business model to evaluate the sustainability of the business model of banks. In the second step, the sustainability performance of sixteen banks from eight European countries including Norway, The UK, Poland, Hungary, Germany, France, Spain, and Italy, assessed. The proposed business model components of this study were ranked in terms of their impact on achieving sustainability goals. Consequently, the proposed model components of this study, based on their impact on sustainability, are respectively value proposition, core competencies, financial aspects, business processes, target customers, resources, technology, customer interface, and partner network. The results of the comparison of the banks studied by each country disclosed that the sustainability of the Norwegian and German banks’ business models is higher than in other counties. The studied banks of Hungary and Spain came in second, the banks of The UK, Poland, and France ranked third, and finally, the Italian banks ranked fourth in the sustainability of their business models.
SSRN Electronic Jour... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3556704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 27 Powered bymore_vert SSRN Electronic Jour... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3556704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Guodao Zhang; Shahab S. Band; Changhyun Jun; Sayed M. Bateni; Huan-Ming Chuang; Hamza Turabieh; Majdi Mafarja; Amir Mosavi; Massoud Moslehpour;Solar radiation (SR) is considered as a critical factor in determining energy management. In this research, the potential of the Bayesian averaging model (BMA) was investigated for estimating monthly SR. The inputs were monthly average temperature, wind speed, relative humidity, and sunshine duration. The BMA model was employed to estimate SR by extracting information from multiple adaptive neuro-fuzzy systems (ANFIS) and multi-layer perceptron (MLP) models. In this study, Archimedes optimization algorithm (AOA), particle swarm optimization (PSO), genetic algorithm (GA), and bat algorithm (BA) were used to tune the parameters of the ANIFS and MLP. In addition, a multitude of error indices such as root mean square error (RMSE), and Nash Sutcliff efficiency (NSE), and several graphical tools were used to investigate the accuracy of the models. The results showed the better performance of the BMA model than other models for estimating solar radiation. For example, BMA with RMSE of 6.78, MAE of 5.25, and NSE of 0.96 had the best accuracy in the training stage of the Tabriz station. On the other hand, in the testing level of Tehran station, BMA (RMSE=7.89 MJ/ m2, MAE=6.89 MJ/ m2, NSE=0.95) gave the best accuracy, and the MLP model (RMSE= 14.12 MJ/ m2, MAE=12.23 MJ/ m2, and NSE=0.77) gave the worst performance, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.10.117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.10.117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of), Hong Kong, China (People's Republic of)Publisher:Informa UK Limited Lixuesong Han; Amir Mosavi; Amir Mosavi; Amir Mosavi; Shahab S. Band; Rasool Kalbasi; Kwok Wing Chau; Dariush Bahrami; Mehdi Jahangiri; Chenji Lu; Arash Karimipour; Alexei Yumashev;handle: 10397/97737
In this study, the effects of adding trapezoidal ribs to microchannel on functionalized multi-walled nano-tubes/water nanofluid heat transfer are examined. The dimensionless slip coefficient (0–0.1), Reynolds number (50–400) and Hartmann number (0–20) are considered as independent variables and the heat transfer along with the entropy generation are considered as the output parameters. The simulation outcomes confirm that the addition of trapezoidal ribs, on the one hand, increases the heat transfer area and, on the other hand, intensifies the possibility of vortex formation. The presence of a vortex decreases the heat transfer potential and thus reduces the performance of the trapezoidal-wall microchannel compared to the base one. With increasing Reynolds number (Re), the probability of vortex formation intensifies, which in turn diminishes the positive effects of using trapezoidal ribs. However, it is found that, with increasing Hartmann number (Ha) and dimensionless slip coefficient $ ({{\beta^\ast }} ) $ , the vortex strength is weakened, and consequently heat transfer is improved. Based on numerical computations, it is found that at Re = 400, Ha = 0 and $ {\beta ^\ast } $ = 0 and adding trapezoidal ribs to the base microchannel increases heat transfer by 11.12%.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/97737Data sources: Bielefeld Academic Search Engine (BASE)Engineering Applications of Computational Fluid MechanicsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEngineering Applications of Computational Fluid MechanicsArticleLicense: CC BYData sources: UnpayWallEngineering Applications of Computational Fluid MechanicsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19942060.2021.1984991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/97737Data sources: Bielefeld Academic Search Engine (BASE)Engineering Applications of Computational Fluid MechanicsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEngineering Applications of Computational Fluid MechanicsArticleLicense: CC BYData sources: UnpayWallEngineering Applications of Computational Fluid MechanicsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19942060.2021.1984991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal , Preprint 2021Publisher:MDPI AG Authors: Hossein Moayedi; Amir Mosavi;Early prediction of thermal loads plays an essential role in analyzing energy-efficient buildings’ energy performance. On the other hand, stochastic algorithms have recently shown high proficiency in dealing with this issue. These are the reasons that this study is dedicated to evaluating an innovative hybrid method for predicting the cooling load (CL) in buildings with residential usage. The proposed model is a combination of artificial neural networks and stochastic fractal search (SFS–ANNs). Two benchmark algorithms, namely the grasshopper optimization algorithm (GOA) and firefly algorithm (FA) are also considered to be compared with the SFS. The non-linear effect of eight independent factors on the CL is analyzed using each model’s optimal structure. Evaluation of the results outlined that all three metaheuristic algorithms (with more than 90% correlation) can adequately optimize the ANN. In this regard, this tool’s prediction error declined by nearly 23%, 18%, and 36% by applying the GOA, FA, and SFS techniques. Moreover, all used accuracy criteria indicated the superiority of the SFS over the benchmark schemes. Therefore, it is inferred that utilizing the SFS along with ANN provides a reliable hybrid model for the early prediction of CL.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/6/1649/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/6/1649/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2019 SpainPublisher:MDPI AG Annamária R. Várkonyi-Kóczy; Farshid Aram; Ester Higueras García; Amir Mosavi; Amir Mosavi; Amir Mosavi; Ebrahim Solgi;This empirical study investigates large urban park cooling effects on the thermal comfort of occupants in the vicinity of the main central park, located in Madrid, Spain. Data were gathered during hot summer days, using mobile observations and a questionnaire. The results showed that the cooling effect of this urban park of 140 ha area at a distance of 150 m is able to reduce temperature by an average of 0.63°C and 1.28°C for distances of 380 m and of 665 meters from the park. Moreover, the degree of the Physiological Equivalent Temperature (PET) index at a distance of 150 meters from the park is on average 2°C PET and 2.3°C PET less compared to distances of 380 m and 665 m, respectively. Considering distance from the park, the correlation between occupant Perceived Thermal Comfort (PTC) and PET is inverse. That is, augmenting the distance from park increases PET, while the extent of PTC reduces accordingly. The correlation between these two factors at the nearest and furthest distances from the park is meaningful (P-value <0/05). The results also showed that large-scale urban parks generally play a significant part in creating a cognitive state of high-perceived thermal comfort spaces for residents.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3904/pdfData sources: Multidisciplinary Digital Publishing InstituteOxford Brookes University: RADARArticle . 2019License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/4d427829-449b-4cde-809c-0951b799f897/1/energies-12-03904.pdfData sources: Oxford Brookes University: RADARhttps://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAOxford Brookes University: RADAROther literature type . 2019License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201909.0155.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3904/pdfData sources: Multidisciplinary Digital Publishing InstituteOxford Brookes University: RADARArticle . 2019License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/4d427829-449b-4cde-809c-0951b799f897/1/energies-12-03904.pdfData sources: Oxford Brookes University: RADARhttps://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAOxford Brookes University: RADAROther literature type . 2019License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201909.0155.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu