- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 FinlandPublisher:Elsevier BV Aaltonen, Miamari; Ojanen, Severi; Velazquez Martinez, Omar; Eronen, Emmi; Liu, Fupeng; Wilson, Benjamin P.; Serna Guerrero, Rodrigo; Lundström; Mari; Porvali, Antti;The present work offers a study on the engineering implications of the recovery of valuable fractions from industrially collected lithium battery (LIB) waste by mechanical and hydrometallurgical processes in HCl media. Direct leaching of LIB waste provides a possibility for Li extraction, a component that is lost into the slag fraction in the state-of-art high temperature processes. The challenges arising from the heterogeneous composition of industrial battery waste are highlighted, and the behavior of main metals present such as Co, Cu, Li, Mn, Ni and Al is observed. It is shown that mechanical separation processes can form fractions rich on Cu and Al, although subsequent refining stages are necessary. Regarding direct leaching, fast kinetics were found, as complete Li dissolution can be achieved in ca. 120 min. Furthermore, high solid/liquid ratio (>1/10) is required to increase metal value concentrations, resulting in a viscous slurry due to the graphite, plastics and other undissolved materials, which challenges filtration and washing of leach residue. Neutralization of the product liquid solution (PLS) result in co-precipitation of valuable battery metals along with Fe and Al. The highest value of LIBs lies in Co, subjected for solvent extraction (SX) or direct precipitation to make an intermediate product. SX can provide selectivity whereas Na2CO3 precipitation provides a fast route for Co-Ni bulk production. Li2CO3 precipitation from the remaining PLS is possible as zabuyelite - however, due to heterogeneity of the battery waste, the recovery of Li2CO3 with battery-grade purity remains a difficult task to be achieved by direct precipitation route.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2018.11.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2018.11.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FinlandPublisher:MDPI AG Authors: Porvali, Antti; van den Boogaart, Karl Gerard; Santasalo-Aarnio, Annukka; Lundström, Mari; +4 AuthorsPorvali, Antti; van den Boogaart, Karl Gerard; Santasalo-Aarnio, Annukka; Lundström, Mari; Reuter, Markus; Serna-Guerrero; Rodrigo; Velázquez-Martinez, Omar;The principle of the circular economy is to reintroduce end-of-life materials back into the economic cycle. While reintroduction processes, for example, recycling or refurbishing, undoubtedly support this objective, they inevitably present material losses or generation of undesired by-products. Balancing losses and recoveries into a single and logical assessment has now become a major concern. The present work broadens the use of relative statistical entropy and material flow analysis to assess the recycling processes of two lithium-ion batteries previously published in the literature. Process simulation software, that is, HSC Sim®, was employed to evaluate with a high level of accuracy the performance of such recycling processes. Hereby, this methodology introduces an entropic association between the quality of final recoveries and the pre-processing stages, that is, shredding, grinding, and separation, by a parameter based on information theory. The results demonstrate that the pre-processing stages have a significant impact on the entropy value obtained at the final stages, reflecting the losses of materials into waste and side streams. In this manner, it is demonstrated how a pre-processing system capable of separating a wider number of components is advantageous, even when the final quality of refined products in two different processes is comparable. Additionally, it is possible to observe where the process becomes redundant, that is, where processing of material does not result in a significant concentration in order to take corrective actions on the process. The present work demonstrates how material flow analysis combined with statistical entropy can be used as a parameter upon which the performance of multiple recycling processes can be objectively compared from a material-centric perspective.
Batteries arrow_drop_down BatteriesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2313-0105/5/2/41/pdfData sources: Multidisciplinary Digital Publishing InstituteAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries5020041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2313-0105/5/2/41/pdfData sources: Multidisciplinary Digital Publishing InstituteAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries5020041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 FinlandPublisher:Elsevier BV Aaltonen, Miamari; Ojanen, Severi; Velazquez Martinez, Omar; Eronen, Emmi; Liu, Fupeng; Wilson, Benjamin P.; Serna Guerrero, Rodrigo; Lundström; Mari; Porvali, Antti;The present work offers a study on the engineering implications of the recovery of valuable fractions from industrially collected lithium battery (LIB) waste by mechanical and hydrometallurgical processes in HCl media. Direct leaching of LIB waste provides a possibility for Li extraction, a component that is lost into the slag fraction in the state-of-art high temperature processes. The challenges arising from the heterogeneous composition of industrial battery waste are highlighted, and the behavior of main metals present such as Co, Cu, Li, Mn, Ni and Al is observed. It is shown that mechanical separation processes can form fractions rich on Cu and Al, although subsequent refining stages are necessary. Regarding direct leaching, fast kinetics were found, as complete Li dissolution can be achieved in ca. 120 min. Furthermore, high solid/liquid ratio (>1/10) is required to increase metal value concentrations, resulting in a viscous slurry due to the graphite, plastics and other undissolved materials, which challenges filtration and washing of leach residue. Neutralization of the product liquid solution (PLS) result in co-precipitation of valuable battery metals along with Fe and Al. The highest value of LIBs lies in Co, subjected for solvent extraction (SX) or direct precipitation to make an intermediate product. SX can provide selectivity whereas Na2CO3 precipitation provides a fast route for Co-Ni bulk production. Li2CO3 precipitation from the remaining PLS is possible as zabuyelite - however, due to heterogeneity of the battery waste, the recovery of Li2CO3 with battery-grade purity remains a difficult task to be achieved by direct precipitation route.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2018.11.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2018.11.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FinlandPublisher:MDPI AG Authors: Porvali, Antti; van den Boogaart, Karl Gerard; Santasalo-Aarnio, Annukka; Lundström, Mari; +4 AuthorsPorvali, Antti; van den Boogaart, Karl Gerard; Santasalo-Aarnio, Annukka; Lundström, Mari; Reuter, Markus; Serna-Guerrero; Rodrigo; Velázquez-Martinez, Omar;The principle of the circular economy is to reintroduce end-of-life materials back into the economic cycle. While reintroduction processes, for example, recycling or refurbishing, undoubtedly support this objective, they inevitably present material losses or generation of undesired by-products. Balancing losses and recoveries into a single and logical assessment has now become a major concern. The present work broadens the use of relative statistical entropy and material flow analysis to assess the recycling processes of two lithium-ion batteries previously published in the literature. Process simulation software, that is, HSC Sim®, was employed to evaluate with a high level of accuracy the performance of such recycling processes. Hereby, this methodology introduces an entropic association between the quality of final recoveries and the pre-processing stages, that is, shredding, grinding, and separation, by a parameter based on information theory. The results demonstrate that the pre-processing stages have a significant impact on the entropy value obtained at the final stages, reflecting the losses of materials into waste and side streams. In this manner, it is demonstrated how a pre-processing system capable of separating a wider number of components is advantageous, even when the final quality of refined products in two different processes is comparable. Additionally, it is possible to observe where the process becomes redundant, that is, where processing of material does not result in a significant concentration in order to take corrective actions on the process. The present work demonstrates how material flow analysis combined with statistical entropy can be used as a parameter upon which the performance of multiple recycling processes can be objectively compared from a material-centric perspective.
Batteries arrow_drop_down BatteriesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2313-0105/5/2/41/pdfData sources: Multidisciplinary Digital Publishing InstituteAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries5020041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2313-0105/5/2/41/pdfData sources: Multidisciplinary Digital Publishing InstituteAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries5020041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu