- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- Energy Research
- 12. Responsible consumption
description Publicationkeyboard_double_arrow_right Article 2023Publisher:IOP Publishing S Durgadevi; K Udhayakumar; M Praveen; R Krishnakumar; N Natarajan; A Jayaraman; M Vasudevan;Abstract The demand for sustainable building materials is increasing day-by-day pertaining to the challenges in meeting the cost, reliability and climate adaptability. In addition to the structural requirements, improvements in the building technology are also trending towards eco-friendly, comfortable and economic housing solutions. The present study deals with the usage of two industrial waste materials (bagasse ash and granite powder) to prepare lightweight and heat resistant concrete panels (M25 grade). The replacement of aggregates was accomplished sequentially by varying the mix proportioning (10%, 15%, 20% and 25%) using granite powder and bagasse ash balls (~10mm dia.). In addition to the weight reduction, coconut fibres and paraffin were also applied in intermittent layers to enhance thermal insulation properties. The temperature profiles were monitored using thermocouple sensors fitted onto the panel surfaces. The physical, mechanical and thermal properties of the casted panels were studied after 28 days of curing. A comparative study was made for solid and hollow light panels in terms of strength and weight. The results indicated that significant temperature reduction is achieved between the surfaces by using the phase changing materials (3%) while the compressive strength of the hollow lightweight panel is satisfactory (23.48 N/mm2). Hence, the prepared concrete panels can be suitably employed in building construction where thermal comfort and reduced weight are in demand.
IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/1130/1/012010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/1130/1/012010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Arathi Radhakrishnan; Pandiyan Balaganesh; Mangottiri Vasudevan; Narayanan Natarajan; +9 AuthorsArathi Radhakrishnan; Pandiyan Balaganesh; Mangottiri Vasudevan; Narayanan Natarajan; Abhishek Chauhan; Jayati Arora; Anuj Ranjan; Vishnu D. Rajput; Svetlana Sushkova; Tatiana Minkina; Rupesh Kumar Basniwal; Rajkishor Kapardar; Rajpal Srivastav;doi: 10.3390/su15075847
The increasing population density and industrialization are adversely affecting the environment globally. The contamination of the soil, agricultural lands, and water bodies with petroleum wastes and other hydrocarbon pollutants has become a serious environmental concern as perceived by the impacts on the aquatic and marine ecosystem. Various investigations have provided novel insights into the significant roles of microbial activities in the cleanup of hydrocarbon contaminants. However, the burden of these pollutants is expected to increase many folds in the next decade. Therefore, it is necessary to investigate and develop low-cost technologies rapidly, focusing on eco-sustainable development. An understanding of the details of biodegradation mechanisms paves the way for enhancing the efficiency of bioremediation technology. The current article reviews the applicability of various bioremediation processes, biodegradation pathways, and treatments, and the role of microbial activities in achieving efficient eco-sustainable bioremediation of hydrocarbon pollutants. It is envisaged that an integrated bioremediation approach, including biostimulation and bioaugmentation is preferably advocated for the cost-effective removal of toxic petroleum hydrocarbons and their derivatives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15075847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15075847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:IOP Publishing S Durgadevi; K Udhayakumar; M Praveen; R Krishnakumar; N Natarajan; A Jayaraman; M Vasudevan;Abstract The demand for sustainable building materials is increasing day-by-day pertaining to the challenges in meeting the cost, reliability and climate adaptability. In addition to the structural requirements, improvements in the building technology are also trending towards eco-friendly, comfortable and economic housing solutions. The present study deals with the usage of two industrial waste materials (bagasse ash and granite powder) to prepare lightweight and heat resistant concrete panels (M25 grade). The replacement of aggregates was accomplished sequentially by varying the mix proportioning (10%, 15%, 20% and 25%) using granite powder and bagasse ash balls (~10mm dia.). In addition to the weight reduction, coconut fibres and paraffin were also applied in intermittent layers to enhance thermal insulation properties. The temperature profiles were monitored using thermocouple sensors fitted onto the panel surfaces. The physical, mechanical and thermal properties of the casted panels were studied after 28 days of curing. A comparative study was made for solid and hollow light panels in terms of strength and weight. The results indicated that significant temperature reduction is achieved between the surfaces by using the phase changing materials (3%) while the compressive strength of the hollow lightweight panel is satisfactory (23.48 N/mm2). Hence, the prepared concrete panels can be suitably employed in building construction where thermal comfort and reduced weight are in demand.
IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/1130/1/012010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/1130/1/012010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Arathi Radhakrishnan; Pandiyan Balaganesh; Mangottiri Vasudevan; Narayanan Natarajan; +9 AuthorsArathi Radhakrishnan; Pandiyan Balaganesh; Mangottiri Vasudevan; Narayanan Natarajan; Abhishek Chauhan; Jayati Arora; Anuj Ranjan; Vishnu D. Rajput; Svetlana Sushkova; Tatiana Minkina; Rupesh Kumar Basniwal; Rajkishor Kapardar; Rajpal Srivastav;doi: 10.3390/su15075847
The increasing population density and industrialization are adversely affecting the environment globally. The contamination of the soil, agricultural lands, and water bodies with petroleum wastes and other hydrocarbon pollutants has become a serious environmental concern as perceived by the impacts on the aquatic and marine ecosystem. Various investigations have provided novel insights into the significant roles of microbial activities in the cleanup of hydrocarbon contaminants. However, the burden of these pollutants is expected to increase many folds in the next decade. Therefore, it is necessary to investigate and develop low-cost technologies rapidly, focusing on eco-sustainable development. An understanding of the details of biodegradation mechanisms paves the way for enhancing the efficiency of bioremediation technology. The current article reviews the applicability of various bioremediation processes, biodegradation pathways, and treatments, and the role of microbial activities in achieving efficient eco-sustainable bioremediation of hydrocarbon pollutants. It is envisaged that an integrated bioremediation approach, including biostimulation and bioaugmentation is preferably advocated for the cost-effective removal of toxic petroleum hydrocarbons and their derivatives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15075847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15075847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu