Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
68 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Giuliani M.; Martini S.; Tortora P. C. D.; Parra S. V.; +2 Authors

    The growing threats of global warming and climate change are two of the main concerns of world society. The culprits are greenhouse gas emissions, which mainly result from the combustion of fossil fuels (i.e. the consumption and production of energy from oil, coal and natural gas), a well-known issue at the centre of many climate change debates. The European Parliament has endorsed the EU target of zero net greenhouse gas emissions by 2050 [1]. It is therefore essential to provide for sustainable energy development strategies such as biomass. The valorization of biomass makes it possible to alleviate environmental problems. we are able to obtain energy from what was, until recently, considered to be waste. this article assesses the contribution that chestnut skin biomass makes, in energy, environmental and economic terms, to the production process of the company Monsurgel Lda. The results show that the chestnut skin can contribute to an energy saving with a good investment payback time and also an environment contribution with the CO2 reduction. Proceedings of the 29th European Biomass Conference and Exhibition, 26-29 April 2021, Online, pp. 515-521

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS UNIMORE - Archi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/29t...
    Conference object . 2021
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility24
    visibilityviews24
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS UNIMORE - Archi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/29t...
      Conference object . 2021
      Data sources: Datacite
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Morselli N.;
    Morselli N.
    ORCID
    Harvested from ORCID Public Data File

    Morselli N. in OpenAIRE
    orcid bw Puglia M.;
    Puglia M.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Puglia M. in OpenAIRE
    Capozzolo G.; orcid bw Allesina G.;
    Allesina G.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Allesina G. in OpenAIRE
    +3 Authors

    AbstractThis study proposes the energy conversion of vine prunings to supply energy to local wineries, with a focus on the Riunite & CIV branch winery located in Carpi (Modena, Italy), exploring the possibility of generating both electricity and heat through biomass gasification. A Matlab-Simulink model is used to evaluate the energy savings that can be achieved when an energy storage system is coupled with the combined heat and power generation system. Within this context, the results showed that it is possible to save $$\approx $$ ≈ 30% of the electricity and $$\approx $$ ≈ 60% of the thermal energy demanded by the winery. However, the economic viability of the project is hindered by high investment and operation costs. DPB is strongly affected by the cost of biomass and the energy prices, resulting in a profitable investment for electricity prices higher than 0.30 $$\div>$$ ÷ > 0.57 €/kWh according to the different scenarios investigated.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS UNIMORE - Archi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Efficiency
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    hybrid
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility20
    visibilityviews20
    downloaddownloads21
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS UNIMORE - Archi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Efficiency
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Pedrazzi, Simone;
    Pedrazzi, Simone
    ORCID
    Harvested from ORCID Public Data File

    Pedrazzi, Simone in OpenAIRE
    orcid Santunione, Giulia;
    Santunione, Giulia
    ORCID
    Harvested from ORCID Public Data File

    Santunione, Giulia in OpenAIRE
    MINARELLI, ANDREA; orcid Allesina, Giulio;
    Allesina, Giulio
    ORCID
    Harvested from ORCID Public Data File

    Allesina, Giulio in OpenAIRE

    Abstract This work discusses the advantages that can be obtained from the integration of landfill gas with biomass gasification. The case study presented consists of a landfill located in the province of Reggio Emilia, in the north of Italy. Landfill gas from municipal-waste fuels four internal combustion engines with overall nominal power of 2 MW, the electricity is sold back to the grid, while the thermal power is used for the heating of an industrial greenhouse compartment for basil production. Within the same facility, green waste is collected from the surrounding municipalities then chipped and sieved. Fine particles are disposed into a composting plant close by, while the sieved fraction is sold to the market for electricity production in large-scale boiler-based power plants. The idea here presented and discussed consists of the implementation of a gasifier to convert the sieved fraction of green waste into a syngas fuel directly on site. Syngas is blended with the landfill gas and then fed to the gas engines. In this work green waste gasification is tested in a commercial small-scale gasifier, proving that sifted green waste is a suitable fuel for this application. A specific consumption of 1.2 kg/kWh and a total electrical efficiency of 16.22% were measured. The sizing of the full-scale gasification facility is based on both the experimental results and data about the local availability of green waste. The economic return of the investment is then discussed. Finally, a further level of integration between gasification and the existing site is proposed: gasification-derived biochar is investigated as soil amendment for the on site company at the landfill that grows basil commercially. Results of 55 days in vivo tests show an increase in the biomass production of the basil of 53% compared to the control test group.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS UNIMORE - Archi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    36
    citations36
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility163
    visibilityviews163
    downloaddownloads93
    Powered by Usage counts
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid ALLESINA, GIULIO;
    ALLESINA, GIULIO
    ORCID
    Harvested from ORCID Public Data File

    ALLESINA, GIULIO in OpenAIRE
    orcid PEDRAZZI, Simone;
    PEDRAZZI, Simone
    ORCID
    Harvested from ORCID Public Data File

    PEDRAZZI, Simone in OpenAIRE
    MONTERMINI, LUCA; orcid Giorgini, L.;
    Giorgini, L.
    ORCID
    Harvested from ORCID Public Data File

    Giorgini, L. in OpenAIRE
    +2 Authors

    The syngas produced by fixed bed gasifiers contains high quantities of particulate and tars. This issue, together with its high temperature, avoids its direct exploitation without a proper cleaning and cooling process. In fact, when the syngas produced by gasification is used in an Internal Combustion engine (IC), the higher the content of tars and particulate, the higher the risk to damage the engine is. If these compounds are not properly removed, the engine may fail to run. A way to avoid engine fails is to intensify the maintenance schedule, but these stops will reduce the system profitability. From a clean syngas does not only follow higher performance of the generator, but also less pollutants in the atmosphere. When is not possible to work on the gasification reactions, the filter plays the most important role in the engine safeguard process. This work is aimed at developing and comparing different porous filters for biomass gasifiers power plants. A drum filter was developed and tested filling it with different filtering media available on the market. As a starting point, the filter was implemented in a Power Pallet 10 kW gasifier produced by the California-based company "ALL Power Labs". The original filter was replaced with different porous biomasses, such as woodchips and corn cobs. Finally, a synthetic zeolites medium was tested and compared with the biological media previously used. The Tar Sampling Protocol (TSP) and a modified "dry" method using the Silica Gel material were applied to evaluate the tars, particulate and water amount in the syngas after the filtration process. Advantages and disadvantages of every filtering media chosen were reported and discussed.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS UNIMORE - Archi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Physics : Conference Series
    Article . 2014 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    Access Routes
    Green
    gold
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility133
    visibilityviews133
    downloaddownloads37
    Powered by Usage counts
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw Rinaldini, Carlo Alberto;
    Rinaldini, Carlo Alberto
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Rinaldini, Carlo Alberto in OpenAIRE
    orcid Allesina, Giulio;
    Allesina, Giulio
    ORCID
    Harvested from ORCID Public Data File

    Allesina, Giulio in OpenAIRE
    orcid Pedrazzi, Simone;
    Pedrazzi, Simone
    ORCID
    Harvested from ORCID Public Data File

    Pedrazzi, Simone in OpenAIRE
    orcid bw Mattarelli, Enrico;
    Mattarelli, Enrico
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Mattarelli, Enrico in OpenAIRE
    +1 Authors

    Abstract The paper presents a numerical analysis of combustion, carried out on a compression ignition indirect injection engine fueled by both Diesel and syngas, the latter obtained from biomass gasification and introduced in the intake manifold. The computational fluid dynamics model includes an improved chemical kinetics scheme, tailored on the syngas-diesel dual fuel combustion. The model was validated by an experimental campaign, on the same engine. The syngas fuel was produced by a small scale gasifier running on wood chips. Several simulations were performed varying both the share of syngas and the Diesel start of injection angle. The total amount of heat released by combustion can increase up to 50%, along with the indicated work and the cylinder peak pressure. The start of injection angle should be modified in order to preserve the mechanical integrity of the engine, as well as to maximize its brake efficiency. The numerical analysis provides the guidelines for setting the injection strategy, as a function of the syngas share.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS UNIMORE - Archi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    22
    citations22
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility143
    visibilityviews143
    downloaddownloads73
    Powered by Usage counts
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Morselli N.;
    Morselli N.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Morselli N. in OpenAIRE
    orcid bw Puglia M.;
    Puglia M.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Puglia M. in OpenAIRE
    Balboni C.; Ottani F.; +5 Authors

    In this work, a simple model was created to estimate the benefits of replacing the LPG, currently used in flame weeding, with the syngas generated from a biomass gasification system. Results shown that 60.1 kg ha-1 of agri-pellet are enough to substitute 16.4 kg ha-1 of LPG when a gasification efficiency of 70 % is considered. The model shown a CO2 generation of 49.8 kg ha-1 for each treatment using the LPG device and 94.5 kg ha-1 for the biomass-powered weeder which is, however, a biogenic source of carbon with a neutral impact on the climate. Moreover, for the gasification facility, a 3.3 kg ha-1 co-production of char was considered which led to the possible stock of 9.6 kgCO2 ha-1 each treatment. Eventually, the proposed model suggests that a net saving of 58.5 kgCO2 ha-1 can be realized if LPG flame weeding treatment is replaced with a syngas-powered flame weeder. Proceedings of the 29th European Biomass Conference and Exhibition, 26-29 April 2021, Online, pp. 233-236

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS UNIMORE - Archi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/29t...
    Conference object . 2021
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility37
    visibilityviews37
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS UNIMORE - Archi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/29t...
      Conference object . 2021
      Data sources: Datacite
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Morselli N.;
    Morselli N.
    ORCID
    Harvested from ORCID Public Data File

    Morselli N. in OpenAIRE
    orcid Puglia M.;
    Puglia M.
    ORCID
    Harvested from ORCID Public Data File

    Puglia M. in OpenAIRE
    orcid Pedrazzi S.;
    Pedrazzi S.
    ORCID
    Harvested from ORCID Public Data File

    Pedrazzi S. in OpenAIRE
    orcid bw Muscio A.;
    Muscio A.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Muscio A. in OpenAIRE
    +2 Authors

    Abstract Weed control is an agronomic technique that must be carried out on almost any cultivation, to prevent undesired weeds from competing with crops for nutrients, water, and light and reducing the annual yield. Nowadays, agriculture is experiencing a transition to both sustainable and organic approaches that is driving the increase in non-chemical treatments. Within this framework, thermal methods are gaining attention due to their higher working speed and effectiveness when compared to mechanical ones but thermal devices are still fueled with fossils leading to considerable greenhouse gas emissions. This work investigates the advantages of substituting liquefied petroleum gas (LPG) powered weeder with a portable gasification-based flame weeder fueled with woody biomass. Energy balance, carbon footprint and feasibility aspects are taken into account and the proposed solution is compared with the reference literature of LPG flame weeder. A flame weeder prototype is built starting from the gasification reactor of a commercial micro scale cogeneration unit. The gasifier is then fueled with A2-grade fir pellets and the syngas is burnt in a swirled flare designed for cross-flame weeding in woody crop rows. The biomass-fueled prototype is capable of a thermal flux directed towards the weeds of 208–247 kJ m−2 at a temperature that ranges from 850 to 980 °C. When compared to LPG systems applied to vineyards or orchards, the proposed solution reduces the fuel cost of the 72% and CO 2 emissions up to 118% considering the carbon-negative effect added by a 0.653 kg ha−1 of biochar production for each treatment. Results showed a specific fuel consumption of 52.2 kg ha−1 y−1 that can be self-sustained if vineyards prunings are used as fuel.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS UNIMORE - Archi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sustainable Energy Technologies and Assessments
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility95
    visibilityviews95
    Powered by Usage counts
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Pedrazzi, Simone;
    Pedrazzi, Simone
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Pedrazzi, Simone in OpenAIRE
    orcid bw Allesina, Giulio;
    Allesina, Giulio
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Allesina, Giulio in OpenAIRE
    orcid bw Morselli, Nicolò;
    Morselli, Nicolò
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Morselli, Nicolò in OpenAIRE
    orcid bw Puglia, Marco;
    Puglia, Marco
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Puglia, Marco in OpenAIRE
    +9 Authors

    This paper exposes the first year of activities regarding an Italian regional project called REBAF (RecuperoEnergeticoBiomasse Alvei Fluviali = Energetic Recover of River Biomasses). The project concerns the modeling, realization and experimental validation of innovative pathways for the exploitation of grass and woodsy biomasses from river maintenance operations. The project is focused on the Secchia river situated in the mid North of Italy. The final goal is to make the river maintenance operations self-sustainability from the economic and environmental point of views. During the first year of the project, the typical biomasses of the Secchia river was recognized and quantified. Poplar was chosen as major representative of the wood biomasses. An evaluation about wood biomass quantity obtainable for every hectare of riverbanks maintenance was made. Several gasification tests of poplar wood chips from river maintenance was done in a small CHP gasifier. The biochar obtained was characterized and it was applied on field to some giant reed plantations in order to evaluate if there will be a productivity increase with biochar as soil amendant. In addition, a model to evaluate the giant reed annual productivity in the Secchia river banks was developed. Proceedings of the 25th European Biomass Conference and Exhibition, 12-15 June 2017, Stockholm, Sweden, pp. 52-57

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS UNIMORE - Archi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/25t...
    Conference object . 2017
    Data sources: Datacite
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility25
    visibilityviews25
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS UNIMORE - Archi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/25t...
      Conference object . 2017
      Data sources: Datacite
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Allesina, Giulio;
    Allesina, Giulio
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Allesina, Giulio in OpenAIRE
    orcid FERRARI, chiara;
    FERRARI, chiara
    ORCID
    Harvested from ORCID Public Data File

    FERRARI, chiara in OpenAIRE
    orcid Muscio, Alberto;
    Muscio, Alberto
    ORCID
    Harvested from ORCID Public Data File

    Muscio, Alberto in OpenAIRE
    orcid Pedrazzi, Simone;
    Pedrazzi, Simone
    ORCID
    Harvested from ORCID Public Data File

    Pedrazzi, Simone in OpenAIRE

    Abstract Energy retrofit of the facade of condominium buildings may be a difficult task because thermal bridges such as those due to balconies, common elements in the architecture of many countries, are often arduous to correct by added insulation due to several constraints. An alternative retrofit approach is therefore analyzed, easy to implement and relatively inexpensive. It consists in changing a balcony into a ventilated sunspace during the cold season, exploiting solar gains to compensate heat loss. More specifically, transparent plastic roll-up sheets are installed along the balcony perimeter, removable in the hot season, to enclose the volume between two superposed balcony slabs. The obtained sunspace is then used as a pre-heating chamber for a single-flow ventilation system that ensures the air changes required indoors. Heat gain to the indoor environment can thus be increased with respect to a simpler sunspace without ventilation, and possibly modulated along the day by proper control of the flow rate. In this work, the proposed approach and a small-scale physical model are presented. The model will serve to validate analyses aimed to forecast and optimize the performance of ventilated sunspaces built around balconies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS UNIMORE - Archi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    30
    citations30
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility109
    visibilityviews109
    Powered by Usage counts
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Parenti M.; Ottani F.; orcid bw Puglia M.;
    Puglia M.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Puglia M. in OpenAIRE
    orcid bw Morselli N.;
    Morselli N.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Morselli N. in OpenAIRE
    +2 Authors

    Hemp cultivation gained an important role in recent years. Two major production chains can be defined, one dedicated to the cultivation of hemp for the production of fiber and wood and the other relating to the production of inflorescences for the market of derivative products containing cannabidiol, better known as CBD. The problem that will be highlighted and addressed in this article is related to the enhancement of cannabis production waste for CBD. In particular, since flowers are the only useful part of crops dedicated to this purpose, to date the stems of plants are considered a difficult waste to exploit. The alternatives are few and one of the simplest and most immediate is certainly the waste-to-energy process of this material; in fact it is not possible to obtain fiber and wood of good quality from the CBD production chain, because these crops are optimized for flower production. Waste-to-energy, on the other hand, requires mechanical pre-treatments in order to use the raw material within the typical thermal conversion systems (e.g. biomass boilers, pellet stoves, gasifiers). The great obstacle to being able to efficiently transform these wastes into fuel, lies in the very nature of the hemp stems as the fibers constituting the outermost part of the plant stems are well known for their good mechanical resistance. These properties however become a problem when the material has to be treated with standard machinery for pelleting and briquetting, as they hind the mechanical components suitable for the purpose giving rise to maintenance and breakdown issues. To solve the problem, the possibility of decreasing the mechanical properties of hemp fibers has to be investigated, so as to permit the transformation of this material into an economically sustainable fuel. It was therefore decided to pre-treat the stems of the plants with a torrefaction process, to sufficiently weaken the fibers to be mechanically treated. Shear resistance was tested with a “piston device” to obtain a qualitative estimate of the mechanical behaviour of the hemp fibers only; in fact it is assumed that to solve the problem, it is sufficient to concentrate on the weakening of the fiber instead of the entire stem of the plant. In conclusion, a first estimate is defined of the minimum energy necessary for the roasting of the plant stems, sufficient to weaken the fibers to make the mechanical transformation of the stems of hemp plants into fuel, possible and economically sustainable. Proceedings of the 29th European Biomass Conference and Exhibition, 26-29 April 2021, Online, pp. 1057-1060

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS UNIMORE - Archi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/29t...
    Conference object . 2021
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility58
    visibilityviews58
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS UNIMORE - Archi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/29t...
      Conference object . 2021
      Data sources: Datacite
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph