- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015Publisher:MDPI AG Jae-Soon Choi; Viviane Schwartz; Eduardo Santillan-Jimenez; Mark Crocker; Samuel Lewis; Michael Lance; Harry Meyer; Karren More;doi: 10.3390/catal5010406
We investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore volume and surface area. The extent of these structural changes was sensitive to the initial carbide structure and was lower under actual hydroprocessing conditions indicating the possibility of further improving the hydrothermal stability of Mo carbides by optimizing catalyst structure and operating conditions. Mo carbides were active in acetic acid conversion in the presence of liquid water, their activity being comparable to that of Ru/C. The results suggest that effective and inexpensive bio-oil hydroprocessing catalysts could be designed based on Mo carbides, although a more detailed understanding of the structure-performance relationships is needed, especially in upgrading of more complex reaction mixtures or real bio-oils.
Catalysts arrow_drop_down CatalystsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4344/5/1/406/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal5010406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4344/5/1/406/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal5010406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015Publisher:MDPI AG Jae-Soon Choi; Viviane Schwartz; Eduardo Santillan-Jimenez; Mark Crocker; Samuel Lewis; Michael Lance; Harry Meyer; Karren More;doi: 10.3390/catal5010406
We investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore volume and surface area. The extent of these structural changes was sensitive to the initial carbide structure and was lower under actual hydroprocessing conditions indicating the possibility of further improving the hydrothermal stability of Mo carbides by optimizing catalyst structure and operating conditions. Mo carbides were active in acetic acid conversion in the presence of liquid water, their activity being comparable to that of Ru/C. The results suggest that effective and inexpensive bio-oil hydroprocessing catalysts could be designed based on Mo carbides, although a more detailed understanding of the structure-performance relationships is needed, especially in upgrading of more complex reaction mixtures or real bio-oils.
Catalysts arrow_drop_down CatalystsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4344/5/1/406/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal5010406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4344/5/1/406/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal5010406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: A...NSF| Collaborative Research: Analysis of Defects and Their Causes in Bulk Aluminum Nitride CrystalsAuthors: Du, Li; Edgar, James H.; Kenik, Edward A.; Meyer III, Harry;handle: 2097/3279
The sublimation-recondensation growth of titanium nitride crystals with N/Ti ratio of 0.99 on tungsten substrates is reported. The growth rate dependence on temperature and pressure was determined, and the calculated activation energy was 775.8 ± 29.8 kJ/mol. The lateral and vertical growth rates changed with the time of growth and the fraction of the tungsten substrate surface covered. The orientation relationship of TiN (001) || W (001) with TiN [100] || W [110], a 45° angle between TiN [100] and W [100], occurs not only for TiN crystals deposited on (001) textured tungsten but also for TiN crystals deposited on randomly orientated tungsten. This study demonstrates that this preferred orientational relationship minimizes the lattice mismatch between the TiN and tungsten.
Journal of Materials... arrow_drop_down Journal of Materials Science Materials in ElectronicsArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10854-009-9873-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Science Materials in ElectronicsArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10854-009-9873-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: A...NSF| Collaborative Research: Analysis of Defects and Their Causes in Bulk Aluminum Nitride CrystalsAuthors: Du, Li; Edgar, James H.; Kenik, Edward A.; Meyer III, Harry;handle: 2097/3279
The sublimation-recondensation growth of titanium nitride crystals with N/Ti ratio of 0.99 on tungsten substrates is reported. The growth rate dependence on temperature and pressure was determined, and the calculated activation energy was 775.8 ± 29.8 kJ/mol. The lateral and vertical growth rates changed with the time of growth and the fraction of the tungsten substrate surface covered. The orientation relationship of TiN (001) || W (001) with TiN [100] || W [110], a 45° angle between TiN [100] and W [100], occurs not only for TiN crystals deposited on (001) textured tungsten but also for TiN crystals deposited on randomly orientated tungsten. This study demonstrates that this preferred orientational relationship minimizes the lattice mismatch between the TiN and tungsten.
Journal of Materials... arrow_drop_down Journal of Materials Science Materials in ElectronicsArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10854-009-9873-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Science Materials in ElectronicsArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10854-009-9873-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Karren L. More; Barada K. Nayak; Michael D. Biegalski; Vikram V. Iyengar; Mool C. Gupta; Jian V. Li; Harry M. Meyer;In this work, we report a detailed material study of ultrafast laser textured silicon surfaces to gain insight into the impact of ultrafast laser processing conditions on photovoltaic device properties. A comprehensive study of the ultrafast laser processed silicon is achieved by determination of crystal structure and elemental compositional changes using transmission electron microscopy, compositional mapping by energy dispersive X-ray spectroscopy and depth profiling compositional determination using X-ray photoelectron spectroscopy. We have observed material non-homogeneity, impurity incorporation and strained silicon, all limited to the surface. A combination of chemical etching and thermal annealing was used to remove the laser induced changes and the material was restored to its starting quality. Further, silicon solar cell devices on such defect-etched surfaces are fabricated. These devices are characterized through dark i–v analysis and Fourier transform deep level transient spectroscopy for defect analysis.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Karren L. More; Barada K. Nayak; Michael D. Biegalski; Vikram V. Iyengar; Mool C. Gupta; Jian V. Li; Harry M. Meyer;In this work, we report a detailed material study of ultrafast laser textured silicon surfaces to gain insight into the impact of ultrafast laser processing conditions on photovoltaic device properties. A comprehensive study of the ultrafast laser processed silicon is achieved by determination of crystal structure and elemental compositional changes using transmission electron microscopy, compositional mapping by energy dispersive X-ray spectroscopy and depth profiling compositional determination using X-ray photoelectron spectroscopy. We have observed material non-homogeneity, impurity incorporation and strained silicon, all limited to the surface. A combination of chemical etching and thermal annealing was used to remove the laser induced changes and the material was restored to its starting quality. Further, silicon solar cell devices on such defect-etched surfaces are fabricated. These devices are characterized through dark i–v analysis and Fourier transform deep level transient spectroscopy for defect analysis.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015Publisher:MDPI AG Jae-Soon Choi; Viviane Schwartz; Eduardo Santillan-Jimenez; Mark Crocker; Samuel Lewis; Michael Lance; Harry Meyer; Karren More;doi: 10.3390/catal5010406
We investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore volume and surface area. The extent of these structural changes was sensitive to the initial carbide structure and was lower under actual hydroprocessing conditions indicating the possibility of further improving the hydrothermal stability of Mo carbides by optimizing catalyst structure and operating conditions. Mo carbides were active in acetic acid conversion in the presence of liquid water, their activity being comparable to that of Ru/C. The results suggest that effective and inexpensive bio-oil hydroprocessing catalysts could be designed based on Mo carbides, although a more detailed understanding of the structure-performance relationships is needed, especially in upgrading of more complex reaction mixtures or real bio-oils.
Catalysts arrow_drop_down CatalystsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4344/5/1/406/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal5010406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4344/5/1/406/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal5010406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015Publisher:MDPI AG Jae-Soon Choi; Viviane Schwartz; Eduardo Santillan-Jimenez; Mark Crocker; Samuel Lewis; Michael Lance; Harry Meyer; Karren More;doi: 10.3390/catal5010406
We investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore volume and surface area. The extent of these structural changes was sensitive to the initial carbide structure and was lower under actual hydroprocessing conditions indicating the possibility of further improving the hydrothermal stability of Mo carbides by optimizing catalyst structure and operating conditions. Mo carbides were active in acetic acid conversion in the presence of liquid water, their activity being comparable to that of Ru/C. The results suggest that effective and inexpensive bio-oil hydroprocessing catalysts could be designed based on Mo carbides, although a more detailed understanding of the structure-performance relationships is needed, especially in upgrading of more complex reaction mixtures or real bio-oils.
Catalysts arrow_drop_down CatalystsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4344/5/1/406/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal5010406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4344/5/1/406/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal5010406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: A...NSF| Collaborative Research: Analysis of Defects and Their Causes in Bulk Aluminum Nitride CrystalsAuthors: Du, Li; Edgar, James H.; Kenik, Edward A.; Meyer III, Harry;handle: 2097/3279
The sublimation-recondensation growth of titanium nitride crystals with N/Ti ratio of 0.99 on tungsten substrates is reported. The growth rate dependence on temperature and pressure was determined, and the calculated activation energy was 775.8 ± 29.8 kJ/mol. The lateral and vertical growth rates changed with the time of growth and the fraction of the tungsten substrate surface covered. The orientation relationship of TiN (001) || W (001) with TiN [100] || W [110], a 45° angle between TiN [100] and W [100], occurs not only for TiN crystals deposited on (001) textured tungsten but also for TiN crystals deposited on randomly orientated tungsten. This study demonstrates that this preferred orientational relationship minimizes the lattice mismatch between the TiN and tungsten.
Journal of Materials... arrow_drop_down Journal of Materials Science Materials in ElectronicsArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10854-009-9873-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Science Materials in ElectronicsArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10854-009-9873-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: A...NSF| Collaborative Research: Analysis of Defects and Their Causes in Bulk Aluminum Nitride CrystalsAuthors: Du, Li; Edgar, James H.; Kenik, Edward A.; Meyer III, Harry;handle: 2097/3279
The sublimation-recondensation growth of titanium nitride crystals with N/Ti ratio of 0.99 on tungsten substrates is reported. The growth rate dependence on temperature and pressure was determined, and the calculated activation energy was 775.8 ± 29.8 kJ/mol. The lateral and vertical growth rates changed with the time of growth and the fraction of the tungsten substrate surface covered. The orientation relationship of TiN (001) || W (001) with TiN [100] || W [110], a 45° angle between TiN [100] and W [100], occurs not only for TiN crystals deposited on (001) textured tungsten but also for TiN crystals deposited on randomly orientated tungsten. This study demonstrates that this preferred orientational relationship minimizes the lattice mismatch between the TiN and tungsten.
Journal of Materials... arrow_drop_down Journal of Materials Science Materials in ElectronicsArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10854-009-9873-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Science Materials in ElectronicsArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10854-009-9873-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Karren L. More; Barada K. Nayak; Michael D. Biegalski; Vikram V. Iyengar; Mool C. Gupta; Jian V. Li; Harry M. Meyer;In this work, we report a detailed material study of ultrafast laser textured silicon surfaces to gain insight into the impact of ultrafast laser processing conditions on photovoltaic device properties. A comprehensive study of the ultrafast laser processed silicon is achieved by determination of crystal structure and elemental compositional changes using transmission electron microscopy, compositional mapping by energy dispersive X-ray spectroscopy and depth profiling compositional determination using X-ray photoelectron spectroscopy. We have observed material non-homogeneity, impurity incorporation and strained silicon, all limited to the surface. A combination of chemical etching and thermal annealing was used to remove the laser induced changes and the material was restored to its starting quality. Further, silicon solar cell devices on such defect-etched surfaces are fabricated. These devices are characterized through dark i–v analysis and Fourier transform deep level transient spectroscopy for defect analysis.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Karren L. More; Barada K. Nayak; Michael D. Biegalski; Vikram V. Iyengar; Mool C. Gupta; Jian V. Li; Harry M. Meyer;In this work, we report a detailed material study of ultrafast laser textured silicon surfaces to gain insight into the impact of ultrafast laser processing conditions on photovoltaic device properties. A comprehensive study of the ultrafast laser processed silicon is achieved by determination of crystal structure and elemental compositional changes using transmission electron microscopy, compositional mapping by energy dispersive X-ray spectroscopy and depth profiling compositional determination using X-ray photoelectron spectroscopy. We have observed material non-homogeneity, impurity incorporation and strained silicon, all limited to the surface. A combination of chemical etching and thermal annealing was used to remove the laser induced changes and the material was restored to its starting quality. Further, silicon solar cell devices on such defect-etched surfaces are fabricated. These devices are characterized through dark i–v analysis and Fourier transform deep level transient spectroscopy for defect analysis.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.04.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu