- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Chang Wang; Siyuan Wang; Yilun Cao; Haojun Yan; Yunyuan Li;doi: 10.3390/su151813849
Urban parks beautify the environment and promote urban public health, and their spatial allocation is significant in maintaining environmental justice. However, the current allocation of urban parks focuses on quantity fairness and pays insufficient attention to accessibility and quality fairness. This study investigated the core area of Beijing and analyzed the fairness of urban park allocation based on park accessibility, area, and quality. We used big data crawling, the two-step floating catchment area method, comprehensive equity evaluation of parks, spatial autocorrelation, and non-parametric tests. The results showed inequality in terms of accessibility, area, and quality, with high spatial distribution in the north and low spatial distribution in the south. The accessibility, shortest distance, and total area of urban parks in high-income residential areas were 3.0, 2.1, and 1.8 times higher, respectively, than those of the low-income residential areas. This indicates that high-income groups have better accessibility, live closer to, and have access to larger urban parks. Middle-income and above groups had access to green space, whereas medium-to-low-income residential areas had poor access to parks, particularly high-quality parks. These findings provide decision-making and planning references for the optimal allocation and rational planning of urban parks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Chang Wang; Siyuan Wang; Yilun Cao; Haojun Yan; Yunyuan Li;doi: 10.3390/su151813849
Urban parks beautify the environment and promote urban public health, and their spatial allocation is significant in maintaining environmental justice. However, the current allocation of urban parks focuses on quantity fairness and pays insufficient attention to accessibility and quality fairness. This study investigated the core area of Beijing and analyzed the fairness of urban park allocation based on park accessibility, area, and quality. We used big data crawling, the two-step floating catchment area method, comprehensive equity evaluation of parks, spatial autocorrelation, and non-parametric tests. The results showed inequality in terms of accessibility, area, and quality, with high spatial distribution in the north and low spatial distribution in the south. The accessibility, shortest distance, and total area of urban parks in high-income residential areas were 3.0, 2.1, and 1.8 times higher, respectively, than those of the low-income residential areas. This indicates that high-income groups have better accessibility, live closer to, and have access to larger urban parks. Middle-income and above groups had access to green space, whereas medium-to-low-income residential areas had poor access to parks, particularly high-quality parks. These findings provide decision-making and planning references for the optimal allocation and rational planning of urban parks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Miao Yu; Xiayuan Mi; Yunyuan Li; Chuling Jiang; Kang Ding; Chang Wang; Linghao Cai;Establishing urban greenspaces is an effective approach for improving urban air quality and thermal environments. However, at a finer scale, the potential mechanisms of urban greenspaces providing pollution retention and cooling benefits remain unclear, especially for the three-dimensional structural characteristics of plant communities. To explore the potential mechanisms, we conducted field experiments on 108 plant communities in Beijing and simultaneously monitored PM10 concentration data and meteorological data both within and outside the plant communities. We analyzed the relationships between three-dimensional structural characteristic factors, the pollution retention benefit, and the cooling benefit. The results indicated that the majority of the plant communities (90.91%) can simultaneously provide both benefits. The herbaceous layer was a crucial factor influencing the pollution retention benefit, with a nonlinear positive correlation between the pollution retention benefit and the ratio of three-dimensional green biomass of herbs and trees (RTDGB-HT) and a threshold of 0.80-1.00. The tree layer was a crucial factor influencing the cooling benefit, as indicated by a positive linear correlation between the cooling benefit and the ratio of three-dimensional green biomass of trees (RTDGB-T). With changes in three-dimensional structural characteristic factors, the rate of change in pollution retention benefit factors was 3-5.5 times that in cooling benefit factors. Mediation analysis confirmed the trade-off between the pollution retention and cooling benefits, with trees indirectly enhancing pollution retention benefit by reducing the daily mean temperature reduction rate (R-Tmean) by 20.44-22.27% and by reducing the daily maximum temperature reduction rate (R-Tmax) by 13.14-15.99%. Overall, 13-23% of the pollution retention benefit was achieved through reducing cooling benefit, and interventions involving extreme heat can minimize the trade-off between the pollution retention and cooling benefits compared to reducing cooling benefit throughout the day. Our findings enrich and extend the current understanding of the correlations associated with the comprehensive benefits at the plant community scale, emphasizing the differences in three-dimensional structural characteristics that provide different benefits, which can better inform the development of refined and scientifically managed strategies for green space renovation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-79887-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-79887-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Miao Yu; Xiayuan Mi; Yunyuan Li; Chuling Jiang; Kang Ding; Chang Wang; Linghao Cai;Establishing urban greenspaces is an effective approach for improving urban air quality and thermal environments. However, at a finer scale, the potential mechanisms of urban greenspaces providing pollution retention and cooling benefits remain unclear, especially for the three-dimensional structural characteristics of plant communities. To explore the potential mechanisms, we conducted field experiments on 108 plant communities in Beijing and simultaneously monitored PM10 concentration data and meteorological data both within and outside the plant communities. We analyzed the relationships between three-dimensional structural characteristic factors, the pollution retention benefit, and the cooling benefit. The results indicated that the majority of the plant communities (90.91%) can simultaneously provide both benefits. The herbaceous layer was a crucial factor influencing the pollution retention benefit, with a nonlinear positive correlation between the pollution retention benefit and the ratio of three-dimensional green biomass of herbs and trees (RTDGB-HT) and a threshold of 0.80-1.00. The tree layer was a crucial factor influencing the cooling benefit, as indicated by a positive linear correlation between the cooling benefit and the ratio of three-dimensional green biomass of trees (RTDGB-T). With changes in three-dimensional structural characteristic factors, the rate of change in pollution retention benefit factors was 3-5.5 times that in cooling benefit factors. Mediation analysis confirmed the trade-off between the pollution retention and cooling benefits, with trees indirectly enhancing pollution retention benefit by reducing the daily mean temperature reduction rate (R-Tmean) by 20.44-22.27% and by reducing the daily maximum temperature reduction rate (R-Tmax) by 13.14-15.99%. Overall, 13-23% of the pollution retention benefit was achieved through reducing cooling benefit, and interventions involving extreme heat can minimize the trade-off between the pollution retention and cooling benefits compared to reducing cooling benefit throughout the day. Our findings enrich and extend the current understanding of the correlations associated with the comprehensive benefits at the plant community scale, emphasizing the differences in three-dimensional structural characteristics that provide different benefits, which can better inform the development of refined and scientifically managed strategies for green space renovation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-79887-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-79887-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Yilun Cao; Yuhan Guo; Chang Wang; Yunyuan Li;doi: 10.3390/su142315507
Refuge Green Space (RGS) plays roles in both rapid evacuation and short-term resettlement in response to sudden natural hazards, especially geological disasters. As a result, its evaluation and location optimization are crucial for the development of sustainable cities. In this study, the Three-Step Floating Catchment Area Method (3SFCA) and Moran’s I index were used as measurement models. The rapid evacuation and short-term resettlement capacity of RGS were evaluated by calculating accessibility with 5, 10, 15 and 30 min of walking. The purpose of this study was to quantitatively evaluate the supply capacity of RGS in the central area of Tianjin and to provide recommendations for future additions to RGS. The results show that over 80% of the research area exhibited relatively poor service capacity within a 5–10 min walking distance, while less than 20% exhibited relatively good service capacity. Within a 15–30 min walking distance, approximately 60% of the study area was not well served by the RGS, while approximately 40% was well served. In conclusion, the layout of RGS in the central area of Tianjin exhibits unevenness and polarization of phenomena, and the supply of different categories of RGS varies widely. There is an insufficient supply of Emergency Sheltered Green Space and Temporary Sheltered Green Space, and that which is available is difficult to reach within 5–10 min. The coverage capacity of Disaster Prevention Park Space is relatively good, essentially covering the entire study area within a 15–30 min walking distance; however, the service capacity is average. Based on these conclusions, areas in which the RGS supply was weak were identified, and future potential RGS additions were identified in conjunction with the Green Space System Plan.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Yilun Cao; Yuhan Guo; Chang Wang; Yunyuan Li;doi: 10.3390/su142315507
Refuge Green Space (RGS) plays roles in both rapid evacuation and short-term resettlement in response to sudden natural hazards, especially geological disasters. As a result, its evaluation and location optimization are crucial for the development of sustainable cities. In this study, the Three-Step Floating Catchment Area Method (3SFCA) and Moran’s I index were used as measurement models. The rapid evacuation and short-term resettlement capacity of RGS were evaluated by calculating accessibility with 5, 10, 15 and 30 min of walking. The purpose of this study was to quantitatively evaluate the supply capacity of RGS in the central area of Tianjin and to provide recommendations for future additions to RGS. The results show that over 80% of the research area exhibited relatively poor service capacity within a 5–10 min walking distance, while less than 20% exhibited relatively good service capacity. Within a 15–30 min walking distance, approximately 60% of the study area was not well served by the RGS, while approximately 40% was well served. In conclusion, the layout of RGS in the central area of Tianjin exhibits unevenness and polarization of phenomena, and the supply of different categories of RGS varies widely. There is an insufficient supply of Emergency Sheltered Green Space and Temporary Sheltered Green Space, and that which is available is difficult to reach within 5–10 min. The coverage capacity of Disaster Prevention Park Space is relatively good, essentially covering the entire study area within a 15–30 min walking distance; however, the service capacity is average. Based on these conclusions, areas in which the RGS supply was weak were identified, and future potential RGS additions were identified in conjunction with the Green Space System Plan.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Chang Wang; Siyuan Wang; Yilun Cao; Haojun Yan; Yunyuan Li;doi: 10.3390/su151813849
Urban parks beautify the environment and promote urban public health, and their spatial allocation is significant in maintaining environmental justice. However, the current allocation of urban parks focuses on quantity fairness and pays insufficient attention to accessibility and quality fairness. This study investigated the core area of Beijing and analyzed the fairness of urban park allocation based on park accessibility, area, and quality. We used big data crawling, the two-step floating catchment area method, comprehensive equity evaluation of parks, spatial autocorrelation, and non-parametric tests. The results showed inequality in terms of accessibility, area, and quality, with high spatial distribution in the north and low spatial distribution in the south. The accessibility, shortest distance, and total area of urban parks in high-income residential areas were 3.0, 2.1, and 1.8 times higher, respectively, than those of the low-income residential areas. This indicates that high-income groups have better accessibility, live closer to, and have access to larger urban parks. Middle-income and above groups had access to green space, whereas medium-to-low-income residential areas had poor access to parks, particularly high-quality parks. These findings provide decision-making and planning references for the optimal allocation and rational planning of urban parks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Chang Wang; Siyuan Wang; Yilun Cao; Haojun Yan; Yunyuan Li;doi: 10.3390/su151813849
Urban parks beautify the environment and promote urban public health, and their spatial allocation is significant in maintaining environmental justice. However, the current allocation of urban parks focuses on quantity fairness and pays insufficient attention to accessibility and quality fairness. This study investigated the core area of Beijing and analyzed the fairness of urban park allocation based on park accessibility, area, and quality. We used big data crawling, the two-step floating catchment area method, comprehensive equity evaluation of parks, spatial autocorrelation, and non-parametric tests. The results showed inequality in terms of accessibility, area, and quality, with high spatial distribution in the north and low spatial distribution in the south. The accessibility, shortest distance, and total area of urban parks in high-income residential areas were 3.0, 2.1, and 1.8 times higher, respectively, than those of the low-income residential areas. This indicates that high-income groups have better accessibility, live closer to, and have access to larger urban parks. Middle-income and above groups had access to green space, whereas medium-to-low-income residential areas had poor access to parks, particularly high-quality parks. These findings provide decision-making and planning references for the optimal allocation and rational planning of urban parks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Miao Yu; Xiayuan Mi; Yunyuan Li; Chuling Jiang; Kang Ding; Chang Wang; Linghao Cai;Establishing urban greenspaces is an effective approach for improving urban air quality and thermal environments. However, at a finer scale, the potential mechanisms of urban greenspaces providing pollution retention and cooling benefits remain unclear, especially for the three-dimensional structural characteristics of plant communities. To explore the potential mechanisms, we conducted field experiments on 108 plant communities in Beijing and simultaneously monitored PM10 concentration data and meteorological data both within and outside the plant communities. We analyzed the relationships between three-dimensional structural characteristic factors, the pollution retention benefit, and the cooling benefit. The results indicated that the majority of the plant communities (90.91%) can simultaneously provide both benefits. The herbaceous layer was a crucial factor influencing the pollution retention benefit, with a nonlinear positive correlation between the pollution retention benefit and the ratio of three-dimensional green biomass of herbs and trees (RTDGB-HT) and a threshold of 0.80-1.00. The tree layer was a crucial factor influencing the cooling benefit, as indicated by a positive linear correlation between the cooling benefit and the ratio of three-dimensional green biomass of trees (RTDGB-T). With changes in three-dimensional structural characteristic factors, the rate of change in pollution retention benefit factors was 3-5.5 times that in cooling benefit factors. Mediation analysis confirmed the trade-off between the pollution retention and cooling benefits, with trees indirectly enhancing pollution retention benefit by reducing the daily mean temperature reduction rate (R-Tmean) by 20.44-22.27% and by reducing the daily maximum temperature reduction rate (R-Tmax) by 13.14-15.99%. Overall, 13-23% of the pollution retention benefit was achieved through reducing cooling benefit, and interventions involving extreme heat can minimize the trade-off between the pollution retention and cooling benefits compared to reducing cooling benefit throughout the day. Our findings enrich and extend the current understanding of the correlations associated with the comprehensive benefits at the plant community scale, emphasizing the differences in three-dimensional structural characteristics that provide different benefits, which can better inform the development of refined and scientifically managed strategies for green space renovation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-79887-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-79887-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Miao Yu; Xiayuan Mi; Yunyuan Li; Chuling Jiang; Kang Ding; Chang Wang; Linghao Cai;Establishing urban greenspaces is an effective approach for improving urban air quality and thermal environments. However, at a finer scale, the potential mechanisms of urban greenspaces providing pollution retention and cooling benefits remain unclear, especially for the three-dimensional structural characteristics of plant communities. To explore the potential mechanisms, we conducted field experiments on 108 plant communities in Beijing and simultaneously monitored PM10 concentration data and meteorological data both within and outside the plant communities. We analyzed the relationships between three-dimensional structural characteristic factors, the pollution retention benefit, and the cooling benefit. The results indicated that the majority of the plant communities (90.91%) can simultaneously provide both benefits. The herbaceous layer was a crucial factor influencing the pollution retention benefit, with a nonlinear positive correlation between the pollution retention benefit and the ratio of three-dimensional green biomass of herbs and trees (RTDGB-HT) and a threshold of 0.80-1.00. The tree layer was a crucial factor influencing the cooling benefit, as indicated by a positive linear correlation between the cooling benefit and the ratio of three-dimensional green biomass of trees (RTDGB-T). With changes in three-dimensional structural characteristic factors, the rate of change in pollution retention benefit factors was 3-5.5 times that in cooling benefit factors. Mediation analysis confirmed the trade-off between the pollution retention and cooling benefits, with trees indirectly enhancing pollution retention benefit by reducing the daily mean temperature reduction rate (R-Tmean) by 20.44-22.27% and by reducing the daily maximum temperature reduction rate (R-Tmax) by 13.14-15.99%. Overall, 13-23% of the pollution retention benefit was achieved through reducing cooling benefit, and interventions involving extreme heat can minimize the trade-off between the pollution retention and cooling benefits compared to reducing cooling benefit throughout the day. Our findings enrich and extend the current understanding of the correlations associated with the comprehensive benefits at the plant community scale, emphasizing the differences in three-dimensional structural characteristics that provide different benefits, which can better inform the development of refined and scientifically managed strategies for green space renovation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-79887-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-79887-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Yilun Cao; Yuhan Guo; Chang Wang; Yunyuan Li;doi: 10.3390/su142315507
Refuge Green Space (RGS) plays roles in both rapid evacuation and short-term resettlement in response to sudden natural hazards, especially geological disasters. As a result, its evaluation and location optimization are crucial for the development of sustainable cities. In this study, the Three-Step Floating Catchment Area Method (3SFCA) and Moran’s I index were used as measurement models. The rapid evacuation and short-term resettlement capacity of RGS were evaluated by calculating accessibility with 5, 10, 15 and 30 min of walking. The purpose of this study was to quantitatively evaluate the supply capacity of RGS in the central area of Tianjin and to provide recommendations for future additions to RGS. The results show that over 80% of the research area exhibited relatively poor service capacity within a 5–10 min walking distance, while less than 20% exhibited relatively good service capacity. Within a 15–30 min walking distance, approximately 60% of the study area was not well served by the RGS, while approximately 40% was well served. In conclusion, the layout of RGS in the central area of Tianjin exhibits unevenness and polarization of phenomena, and the supply of different categories of RGS varies widely. There is an insufficient supply of Emergency Sheltered Green Space and Temporary Sheltered Green Space, and that which is available is difficult to reach within 5–10 min. The coverage capacity of Disaster Prevention Park Space is relatively good, essentially covering the entire study area within a 15–30 min walking distance; however, the service capacity is average. Based on these conclusions, areas in which the RGS supply was weak were identified, and future potential RGS additions were identified in conjunction with the Green Space System Plan.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Yilun Cao; Yuhan Guo; Chang Wang; Yunyuan Li;doi: 10.3390/su142315507
Refuge Green Space (RGS) plays roles in both rapid evacuation and short-term resettlement in response to sudden natural hazards, especially geological disasters. As a result, its evaluation and location optimization are crucial for the development of sustainable cities. In this study, the Three-Step Floating Catchment Area Method (3SFCA) and Moran’s I index were used as measurement models. The rapid evacuation and short-term resettlement capacity of RGS were evaluated by calculating accessibility with 5, 10, 15 and 30 min of walking. The purpose of this study was to quantitatively evaluate the supply capacity of RGS in the central area of Tianjin and to provide recommendations for future additions to RGS. The results show that over 80% of the research area exhibited relatively poor service capacity within a 5–10 min walking distance, while less than 20% exhibited relatively good service capacity. Within a 15–30 min walking distance, approximately 60% of the study area was not well served by the RGS, while approximately 40% was well served. In conclusion, the layout of RGS in the central area of Tianjin exhibits unevenness and polarization of phenomena, and the supply of different categories of RGS varies widely. There is an insufficient supply of Emergency Sheltered Green Space and Temporary Sheltered Green Space, and that which is available is difficult to reach within 5–10 min. The coverage capacity of Disaster Prevention Park Space is relatively good, essentially covering the entire study area within a 15–30 min walking distance; however, the service capacity is average. Based on these conclusions, areas in which the RGS supply was weak were identified, and future potential RGS additions were identified in conjunction with the Green Space System Plan.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu