- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object 2023 ItalyPublisher:MDPI AG Funded by:EC | LANDSUPPORTEC| LANDSUPPORTMarialaura Bancheri 1; 2; Angelo Basile 1; 2; Marco Botta 3; Giuliano Langella 2; 4; Federica Cavaliere 5; Antonello Bonfante 1; Giuliano Ferraro 2; Marco Acutis 3 Alessia Perego 3;doi: 10.3390/su151914164
handle: 11588/951264 , 20.500.14243/460465
This article introduces a new web-based and freely accessible tool, the Nitrate Fate tool (NFt), for the assessment of groundwater vulnerability to nitrate pollution in a variety of pedoclimatic conditions. The contamination of water resources by nitrate, in fact, represents a growing and persistent global environmental problem, and the utilization of practical tools to assist personnel working in the agricultural sector is key for mitigating the impact on land use, while maintaining farmers’ incomes. The (NFt) has been developed and integrated into the geospatial decision support system, LandSupport, as a way to support multiple stakeholders in conducting the so-called what-if scenario analysis (e.g., what would happen to the crop production if I substitute a quote of inorganic fertilizer with the same quote of an organic one?). The tool couples a state-of-art crop-growth model—which simulates crop growth dynamics, the nitrogen and carbon cycles—with a novel transfer function model in order to assess the transport of nitrate through the unsaturated zone to the groundwater table. Within the LandSupport platform, the results are shown both as coloured maps and as cumulative charts representing the travel times and the concentrations of root leachate to groundwater table depths. This work details the tool’s rationale, the coupling of the models, and their implementation. Moreover, this article shows examples of applications supporting several public authorities and end-users, underlining that, by combining all of the information on soils, groundwater table depths, management and climates, it is possible to obtain a comprehensive understanding of nitrogen transport dynamics. Two case studies are presented: the Piana del Sele and the eastern plain of Naples, both located in the Campania region of Italy. The results of the tool’s applications reveal significant groundwater vulnerability in both plains, mainly due to the shallow groundwater table depths, resulting in remarkably fast mean nitrate travel times ranging from 0 to 6 years. Finally, the tool provides a reproducible and replicable solution, and future implementation is foreseen for additional case studies all over the world.
IRIS Cnr arrow_drop_down IRIS CnrArticle . 2023License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/460465/2/sustainability-15-14164_compressed.pdfData sources: IRIS Cnradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151914164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down IRIS CnrArticle . 2023License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/460465/2/sustainability-15-14164_compressed.pdfData sources: IRIS Cnradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151914164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Wiley Funded by:EC | BESTMAP, EC | AGRICORE, EC | LANDSUPPORTEC| BESTMAP ,EC| AGRICORE ,EC| LANDSUPPORTFabio Terribile; Marco Acutis; Antonella Agrillo; Erlisiana Anzalone; Sayed Azam‐Ali; Marialaura Bancheri; Peter Baumann; Barbara Birli; Antonello Bonfante; Marco Botta; Federica Cavaliere; Marco Colandrea; Amedeo D'Antonio; Roberto De Mascellis; Carlo De Michele; Gloria De Paoli; Camilla Della Monica; Marco Di Leginio; Mitja Ferlan; Giuliano Ferraro; Anca Florea; Tamás Hermann; Heike Hoenig; Ebrahim Jahanshiri; Jernej Jevšenak; Veronika Kárpáti; Giuliano Langella; Quang Bao Le; Daniele Lezzi; Harald Loishandl; Sarah Loudin; Piero Manna; Gina Marano; Luigi Marotta; Vlad Merticariu; Florindo Antonio Mileti; Luciana Minieri; Dimitar Misev; Luca Montanarella; Michele Munafò; Martin Neuwirth; Nadia Orefice; Imre Pácsonyi; Panos Panagos; Alessia Perego; Bang Pham Huu; Francesco Pinto; Kathrin Prebeck; Angela Puig; Judit Pump; Calogero Schillaci; Primož Simončič; Mitja Skudnik; Petra Stankovics; Gergely Tóth; Peter Tramberend; Simona Vingiani; Francesco Vuolo; Claudio Zucca; Angelo Basile;doi: 10.1002/ldr.4954
handle: 11588/987826 , 20.500.14243/439683 , 11388/326949 , 11568/1218008
AbstractNowadays, there is contrasting evidence between the ongoing continuing and widespread environmental degradation and the many means to implement environmental sustainability actions starting from good policies (e.g. EU New Green Deal, CAP), powerful technologies (e.g. new satellites, drones, IoT sensors), large databases and large stakeholder engagement (e.g. EIP‐AGRI, living labs). Here, we argue that to tackle the above contrasting issues dealing with land degradation, it is very much required to develop and use friendly and freely available web‐based operational tools to support both the implementation of environmental and agriculture policies and enable to take positive environmental sustainability actions by all stakeholders. Our solution is the S‐DSS LANDSUPPORT platform, consisting of a free web‐based smart Geospatial CyberInfrastructure containing 15 macro‐tools (and more than 100 elementary tools), co‐designed with different types of stakeholders and their different needs, dealing with sustainability in agriculture, forestry and spatial planning. LANDSUPPORT condenses many features into one system, the main ones of which were (i) Web‐GIS facilities, connection with (ii) satellite data, (iii) Earth Critical Zone data and (iv) climate datasets including climate change and weather forecast data, (v) data cube technology enabling us to read/write when dealing with very large datasets (e.g. daily climatic data obtained in real time for any region in Europe), (vi) a large set of static and dynamic modelling engines (e.g. crop growth, water balance, rural integrity, etc.) allowing uncertainty analysis and what if modelling and (vii) HPC (both CPU and GPU) to run simulation modelling ‘on‐the‐fly’ in real time. Two case studies (a third case is reported in the Supplementary materials), with their results and stats, covering different regions and spatial extents and using three distinct operational tools all connected to lower land degradation processes (Crop growth, Machine Learning Forest Simulator and GeOC), are featured in this paper to highlight the platform's functioning. Landsupport is used by a large community of stakeholders and will remain operational, open and free long after the project ends. This position is rooted in the evidence showing that we need to leave these tools as open as possible and engage as much as possible with a large community of users to protect soils and land.
IRIS Cnr arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di PisaLand Degradation and DevelopmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ldr.4954&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di PisaLand Degradation and DevelopmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ldr.4954&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:MDPI AG Pasquale Garofalo; Marco Parlavecchia; Luisa Giglio; Ivana Campobasso; Alessandro Vittorio Vonella; Marco Botta; Tommaso Tadiello; Vincenzo Tucci; Francesco Fornaro; Rita Leogrande; Carolina Vitti; Alessia Perego; Marco Acutis; Domenico Ventrella;handle: 2434/1040213
In view of the expected climate changes, a paradigm shift in soil management, through reduced tillage and/or a different use of crop residues, can be a key point in the mitigation of the climate impacts. The transition from a traditional cropping system (i.e., durum wheat in continuous cropping system under conventional tillage and/or straw removal) to those undergoing the conservative practices require to be evaluated in a medium to long time frame to reach an equilibrium and thus to be properly investigated. In this regard, cropping system simulation models are fundamental tools for the in-silico evaluation of the response of crop growth and soil organic matter dynamics to varying cropping scenarios. This paper reports the evaluations on the parameterization and reliability of the ARMOSA crop simulation model calibrated and validated on experimental datasets collected on durum wheat grown in continuous cropping system under several straw and soil management strategies in a Mediterranean environment.
Archivio Istituziona... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202312.2200.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202312.2200.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 ItalyPublisher:MDPI AG Funded by:EC | LANDSUPPORTEC| LANDSUPPORTÀngela Puig-Sirera; Marco Acutis; Marialaura Bancheri; Antonello Bonfante; Marco Botta; Roberto De Mascellis; Nadia Orefice; Alessia Perego; Mario Russo; Anna Tedeschi; Antonio Troccoli; Angelo Basile;handle: 20.500.14243/441097 , 11568/1196208
Adoption of zero-tillage practices with residue retention in field crops has been introduced as an alternative soil-management technique to counteract the resource degradation and high production costs derived from intensive tillage. In this sense, the biophysical models are valuable tools to evaluate and design the most suitable soil-management technique in view of future climate variability. The aim of this study was to use the ARMOSA process-based crop model to perform an assessment of tillage (T) and no-tillage (No-T) practices of durum-wheat-cropping systems in the Campania region (South of Italy) under current and future climate scenarios. First, the model was calibrated using measurements of soil water content at different depths, leaf area index, and aboveground biomass in the T and No-T treatments during the 2013–2014 season. Then, the model was further applied in the T and No-T treatments to future climate data for 2020–2100 that was generated by the COSMO-CLM model using the RCP4.5 and 8.5 paths. Results of the calibration depicted that the model can accurately simulate the soil-crop-related variables of both soil-management treatments, and thus can be applied to identify the most appropriate conservation agricultural practices in the durum-wheat system. The simulation of soil water content at different depths resulted in small relative root mean square errors (RRMSE < 15%) and an acceptable Pearson’s correlation coefficient (r > 0.51); and the goodness-of-fit indicators for simulated LAI and AGB resulted in acceptable RRMSE (RRMSE < 28%), and high r (r > 0.84) in both soil-management treatments. Future climate simulations showed that No-T management will deliver 10% more wheat yield than the T, with an annual average 0.31% year−1 increase of soil organic carbon, and an increase of 3.80% year−1 for N uptake, which can diminish the N leaching. These results suggest that No-T could be implemented as a more resilient management for farming system in view of climate uncertainty and scarcity of resources. Therefore, these findings support the potential of the ARMOSA model to evaluate the soil-crop response of the durum-wheat system under different management conditions and to design appropriate soil-management practices for current and future climate predictions.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/2/331/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2022License: CC BYData sources: Archivio della Ricerca - Università di PisaAgronomyArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4395/12/2/331/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12020331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 5 Powered bymore_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/2/331/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2022License: CC BYData sources: Archivio della Ricerca - Università di PisaAgronomyArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4395/12/2/331/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12020331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object 2023 ItalyPublisher:MDPI AG Funded by:EC | LANDSUPPORTEC| LANDSUPPORTMarialaura Bancheri 1; 2; Angelo Basile 1; 2; Marco Botta 3; Giuliano Langella 2; 4; Federica Cavaliere 5; Antonello Bonfante 1; Giuliano Ferraro 2; Marco Acutis 3 Alessia Perego 3;doi: 10.3390/su151914164
handle: 11588/951264 , 20.500.14243/460465
This article introduces a new web-based and freely accessible tool, the Nitrate Fate tool (NFt), for the assessment of groundwater vulnerability to nitrate pollution in a variety of pedoclimatic conditions. The contamination of water resources by nitrate, in fact, represents a growing and persistent global environmental problem, and the utilization of practical tools to assist personnel working in the agricultural sector is key for mitigating the impact on land use, while maintaining farmers’ incomes. The (NFt) has been developed and integrated into the geospatial decision support system, LandSupport, as a way to support multiple stakeholders in conducting the so-called what-if scenario analysis (e.g., what would happen to the crop production if I substitute a quote of inorganic fertilizer with the same quote of an organic one?). The tool couples a state-of-art crop-growth model—which simulates crop growth dynamics, the nitrogen and carbon cycles—with a novel transfer function model in order to assess the transport of nitrate through the unsaturated zone to the groundwater table. Within the LandSupport platform, the results are shown both as coloured maps and as cumulative charts representing the travel times and the concentrations of root leachate to groundwater table depths. This work details the tool’s rationale, the coupling of the models, and their implementation. Moreover, this article shows examples of applications supporting several public authorities and end-users, underlining that, by combining all of the information on soils, groundwater table depths, management and climates, it is possible to obtain a comprehensive understanding of nitrogen transport dynamics. Two case studies are presented: the Piana del Sele and the eastern plain of Naples, both located in the Campania region of Italy. The results of the tool’s applications reveal significant groundwater vulnerability in both plains, mainly due to the shallow groundwater table depths, resulting in remarkably fast mean nitrate travel times ranging from 0 to 6 years. Finally, the tool provides a reproducible and replicable solution, and future implementation is foreseen for additional case studies all over the world.
IRIS Cnr arrow_drop_down IRIS CnrArticle . 2023License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/460465/2/sustainability-15-14164_compressed.pdfData sources: IRIS Cnradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151914164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down IRIS CnrArticle . 2023License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/460465/2/sustainability-15-14164_compressed.pdfData sources: IRIS Cnradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151914164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Wiley Funded by:EC | BESTMAP, EC | AGRICORE, EC | LANDSUPPORTEC| BESTMAP ,EC| AGRICORE ,EC| LANDSUPPORTFabio Terribile; Marco Acutis; Antonella Agrillo; Erlisiana Anzalone; Sayed Azam‐Ali; Marialaura Bancheri; Peter Baumann; Barbara Birli; Antonello Bonfante; Marco Botta; Federica Cavaliere; Marco Colandrea; Amedeo D'Antonio; Roberto De Mascellis; Carlo De Michele; Gloria De Paoli; Camilla Della Monica; Marco Di Leginio; Mitja Ferlan; Giuliano Ferraro; Anca Florea; Tamás Hermann; Heike Hoenig; Ebrahim Jahanshiri; Jernej Jevšenak; Veronika Kárpáti; Giuliano Langella; Quang Bao Le; Daniele Lezzi; Harald Loishandl; Sarah Loudin; Piero Manna; Gina Marano; Luigi Marotta; Vlad Merticariu; Florindo Antonio Mileti; Luciana Minieri; Dimitar Misev; Luca Montanarella; Michele Munafò; Martin Neuwirth; Nadia Orefice; Imre Pácsonyi; Panos Panagos; Alessia Perego; Bang Pham Huu; Francesco Pinto; Kathrin Prebeck; Angela Puig; Judit Pump; Calogero Schillaci; Primož Simončič; Mitja Skudnik; Petra Stankovics; Gergely Tóth; Peter Tramberend; Simona Vingiani; Francesco Vuolo; Claudio Zucca; Angelo Basile;doi: 10.1002/ldr.4954
handle: 11588/987826 , 20.500.14243/439683 , 11388/326949 , 11568/1218008
AbstractNowadays, there is contrasting evidence between the ongoing continuing and widespread environmental degradation and the many means to implement environmental sustainability actions starting from good policies (e.g. EU New Green Deal, CAP), powerful technologies (e.g. new satellites, drones, IoT sensors), large databases and large stakeholder engagement (e.g. EIP‐AGRI, living labs). Here, we argue that to tackle the above contrasting issues dealing with land degradation, it is very much required to develop and use friendly and freely available web‐based operational tools to support both the implementation of environmental and agriculture policies and enable to take positive environmental sustainability actions by all stakeholders. Our solution is the S‐DSS LANDSUPPORT platform, consisting of a free web‐based smart Geospatial CyberInfrastructure containing 15 macro‐tools (and more than 100 elementary tools), co‐designed with different types of stakeholders and their different needs, dealing with sustainability in agriculture, forestry and spatial planning. LANDSUPPORT condenses many features into one system, the main ones of which were (i) Web‐GIS facilities, connection with (ii) satellite data, (iii) Earth Critical Zone data and (iv) climate datasets including climate change and weather forecast data, (v) data cube technology enabling us to read/write when dealing with very large datasets (e.g. daily climatic data obtained in real time for any region in Europe), (vi) a large set of static and dynamic modelling engines (e.g. crop growth, water balance, rural integrity, etc.) allowing uncertainty analysis and what if modelling and (vii) HPC (both CPU and GPU) to run simulation modelling ‘on‐the‐fly’ in real time. Two case studies (a third case is reported in the Supplementary materials), with their results and stats, covering different regions and spatial extents and using three distinct operational tools all connected to lower land degradation processes (Crop growth, Machine Learning Forest Simulator and GeOC), are featured in this paper to highlight the platform's functioning. Landsupport is used by a large community of stakeholders and will remain operational, open and free long after the project ends. This position is rooted in the evidence showing that we need to leave these tools as open as possible and engage as much as possible with a large community of users to protect soils and land.
IRIS Cnr arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di PisaLand Degradation and DevelopmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ldr.4954&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di PisaLand Degradation and DevelopmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ldr.4954&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:MDPI AG Pasquale Garofalo; Marco Parlavecchia; Luisa Giglio; Ivana Campobasso; Alessandro Vittorio Vonella; Marco Botta; Tommaso Tadiello; Vincenzo Tucci; Francesco Fornaro; Rita Leogrande; Carolina Vitti; Alessia Perego; Marco Acutis; Domenico Ventrella;handle: 2434/1040213
In view of the expected climate changes, a paradigm shift in soil management, through reduced tillage and/or a different use of crop residues, can be a key point in the mitigation of the climate impacts. The transition from a traditional cropping system (i.e., durum wheat in continuous cropping system under conventional tillage and/or straw removal) to those undergoing the conservative practices require to be evaluated in a medium to long time frame to reach an equilibrium and thus to be properly investigated. In this regard, cropping system simulation models are fundamental tools for the in-silico evaluation of the response of crop growth and soil organic matter dynamics to varying cropping scenarios. This paper reports the evaluations on the parameterization and reliability of the ARMOSA crop simulation model calibrated and validated on experimental datasets collected on durum wheat grown in continuous cropping system under several straw and soil management strategies in a Mediterranean environment.
Archivio Istituziona... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202312.2200.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202312.2200.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 ItalyPublisher:MDPI AG Funded by:EC | LANDSUPPORTEC| LANDSUPPORTÀngela Puig-Sirera; Marco Acutis; Marialaura Bancheri; Antonello Bonfante; Marco Botta; Roberto De Mascellis; Nadia Orefice; Alessia Perego; Mario Russo; Anna Tedeschi; Antonio Troccoli; Angelo Basile;handle: 20.500.14243/441097 , 11568/1196208
Adoption of zero-tillage practices with residue retention in field crops has been introduced as an alternative soil-management technique to counteract the resource degradation and high production costs derived from intensive tillage. In this sense, the biophysical models are valuable tools to evaluate and design the most suitable soil-management technique in view of future climate variability. The aim of this study was to use the ARMOSA process-based crop model to perform an assessment of tillage (T) and no-tillage (No-T) practices of durum-wheat-cropping systems in the Campania region (South of Italy) under current and future climate scenarios. First, the model was calibrated using measurements of soil water content at different depths, leaf area index, and aboveground biomass in the T and No-T treatments during the 2013–2014 season. Then, the model was further applied in the T and No-T treatments to future climate data for 2020–2100 that was generated by the COSMO-CLM model using the RCP4.5 and 8.5 paths. Results of the calibration depicted that the model can accurately simulate the soil-crop-related variables of both soil-management treatments, and thus can be applied to identify the most appropriate conservation agricultural practices in the durum-wheat system. The simulation of soil water content at different depths resulted in small relative root mean square errors (RRMSE < 15%) and an acceptable Pearson’s correlation coefficient (r > 0.51); and the goodness-of-fit indicators for simulated LAI and AGB resulted in acceptable RRMSE (RRMSE < 28%), and high r (r > 0.84) in both soil-management treatments. Future climate simulations showed that No-T management will deliver 10% more wheat yield than the T, with an annual average 0.31% year−1 increase of soil organic carbon, and an increase of 3.80% year−1 for N uptake, which can diminish the N leaching. These results suggest that No-T could be implemented as a more resilient management for farming system in view of climate uncertainty and scarcity of resources. Therefore, these findings support the potential of the ARMOSA model to evaluate the soil-crop response of the durum-wheat system under different management conditions and to design appropriate soil-management practices for current and future climate predictions.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/2/331/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2022License: CC BYData sources: Archivio della Ricerca - Università di PisaAgronomyArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4395/12/2/331/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12020331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 5 Powered bymore_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/2/331/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2022License: CC BYData sources: Archivio della Ricerca - Università di PisaAgronomyArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4395/12/2/331/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12020331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu