- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2025 GermanyPublisher:Elsevier BV Maximilian Dammann; Ulrike Santo; David Böning; Hannah Knoch; Mark Eberhard; Thomas Kolb;Biogenic and anthropogenic feedstocks can be converted into high-quality and hydrogen-rich synthesis gas through high-pressure entrained flow gasification. However, robust pilot-scale process data is essential for the optimisation, design and scale-up of this process. Therefore, this study conducted pilot-scale experiments, developed balancing and equilibrium models for performance analysis and derived input and validation data for CFD models. The experiments were carried out at the bioliqEntrained Flow Gasifier plant using mixtures of ethylene glycol or beech wood pyrolysis oil with glass beads, thermal inputs of up to 5 MW and operating pressures of 40 bar. The cooling screen was recoated before the experiments to ensure well-defined heat transfer conditions. The data from on-line measurements and off-line analyses was evaluated with emphasis on the synthesis gas condition before quenching, the heat extraction from the inner reactor chamber and the carbon conversion. The results show that the balancing model provides consistent and accurate predictions and the equilibrium model is able to track the generated process data. Specifically, the balancing predictions are accurate if the solution of CO$_2$ in the quench water is accounted for, if undetected intermediates are described as lost carbon and lost atomic hydrogen and if further chemical reactions in the quench water are avoided by appropriate operating conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BY NC SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.132809&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BY NC SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.132809&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 GermanyPublisher:Elsevier BV Maximilian Dammann; Ulrike Santo; David Böning; Hannah Knoch; Mark Eberhard; Thomas Kolb;Biogenic and anthropogenic feedstocks can be converted into high-quality and hydrogen-rich synthesis gas through high-pressure entrained flow gasification. However, robust pilot-scale process data is essential for the optimisation, design and scale-up of this process. Therefore, this study conducted pilot-scale experiments, developed balancing and equilibrium models for performance analysis and derived input and validation data for CFD models. The experiments were carried out at the bioliqEntrained Flow Gasifier plant using mixtures of ethylene glycol or beech wood pyrolysis oil with glass beads, thermal inputs of up to 5 MW and operating pressures of 40 bar. The cooling screen was recoated before the experiments to ensure well-defined heat transfer conditions. The data from on-line measurements and off-line analyses was evaluated with emphasis on the synthesis gas condition before quenching, the heat extraction from the inner reactor chamber and the carbon conversion. The results show that the balancing model provides consistent and accurate predictions and the equilibrium model is able to track the generated process data. Specifically, the balancing predictions are accurate if the solution of CO$_2$ in the quench water is accounted for, if undetected intermediates are described as lost carbon and lost atomic hydrogen and if further chemical reactions in the quench water are avoided by appropriate operating conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BY NC SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.132809&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BY NC SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.132809&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025 GermanyPublisher:Elsevier BV Maximilian Dammann; Ulrike Santo; David Böning; Hannah Knoch; Mark Eberhard; Thomas Kolb;Biogenic and anthropogenic feedstocks can be converted into high-quality and hydrogen-rich synthesis gas through high-pressure entrained flow gasification. However, robust pilot-scale process data is essential for the optimisation, design and scale-up of this process. Therefore, this study conducted pilot-scale experiments, developed balancing and equilibrium models for performance analysis and derived input and validation data for CFD models. The experiments were carried out at the bioliqEntrained Flow Gasifier plant using mixtures of ethylene glycol or beech wood pyrolysis oil with glass beads, thermal inputs of up to 5 MW and operating pressures of 40 bar. The cooling screen was recoated before the experiments to ensure well-defined heat transfer conditions. The data from on-line measurements and off-line analyses was evaluated with emphasis on the synthesis gas condition before quenching, the heat extraction from the inner reactor chamber and the carbon conversion. The results show that the balancing model provides consistent and accurate predictions and the equilibrium model is able to track the generated process data. Specifically, the balancing predictions are accurate if the solution of CO$_2$ in the quench water is accounted for, if undetected intermediates are described as lost carbon and lost atomic hydrogen and if further chemical reactions in the quench water are avoided by appropriate operating conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BY NC SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.132809&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BY NC SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.132809&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 GermanyPublisher:Elsevier BV Maximilian Dammann; Ulrike Santo; David Böning; Hannah Knoch; Mark Eberhard; Thomas Kolb;Biogenic and anthropogenic feedstocks can be converted into high-quality and hydrogen-rich synthesis gas through high-pressure entrained flow gasification. However, robust pilot-scale process data is essential for the optimisation, design and scale-up of this process. Therefore, this study conducted pilot-scale experiments, developed balancing and equilibrium models for performance analysis and derived input and validation data for CFD models. The experiments were carried out at the bioliqEntrained Flow Gasifier plant using mixtures of ethylene glycol or beech wood pyrolysis oil with glass beads, thermal inputs of up to 5 MW and operating pressures of 40 bar. The cooling screen was recoated before the experiments to ensure well-defined heat transfer conditions. The data from on-line measurements and off-line analyses was evaluated with emphasis on the synthesis gas condition before quenching, the heat extraction from the inner reactor chamber and the carbon conversion. The results show that the balancing model provides consistent and accurate predictions and the equilibrium model is able to track the generated process data. Specifically, the balancing predictions are accurate if the solution of CO$_2$ in the quench water is accounted for, if undetected intermediates are described as lost carbon and lost atomic hydrogen and if further chemical reactions in the quench water are avoided by appropriate operating conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BY NC SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.132809&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BY NC SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.132809&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu