Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • Authors: Hangzhao Liu; Huan Li; Hanfeng Wang; Ce Li; +2 Authors

    The present paper examines the vortex-induced vibration (VIV) of a 5:1 rectangular cylinder with a detached splitter in its near wake. The tested gap ratio between the cylinder and the splitter (g/D, where g is the gap between the cylinder rear and the splitter and D is the depth of the rectangular cylinder) ranges from 0.5 to 2.0, with an increment of 0.5. To serve as a reference case, the rectangular cylinder without the splitter is also tested under the same conditions. The test Reynolds number ranges from 32 320 to 56 507. This study delves into the vibration response, pressure distributions, and power spectral densities (PSD) of the cylinder under varying gap ratios. Based on qualitative and quantitative analyses between the cylinder and the splitter using phase average techniques, smoke-wire visualization, and numerical simulation, the different vortex shedding modes according to different gap ratios were identified. Experimental and numerical results show that the detached splitter and its gap ratio play important roles in determining the cylinder VIV properties. For g/D = 0.5, the detached splitter has a sensible mitigation on the cylinder VIV. However, as the gap ratio increases, the VIV response initially recovers to the reference case at g/D = 1.0 and subsequently enlarges at g/D = 1.5 and 2.0. The pressure distribution results showed that the detached splitter demonstrates its effects primarily through fluctuations in the pressure field rather than the mean field. In addition, at g/D = 0.5, a sensibly decayed PSD is observed, while at g/D = 1.0–2.0, an intensified PSD is detected. The underlying mechanism of the detached splitter on the VIV of the 5:1 rectangular cylinder should be attributed to the von Kármán vortex street compared to the reference case.

    Physics of Fluidsarrow_drop_down
    Physics of Fluids
    Article . 2024 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      Physics of Fluidsarrow_drop_down
      Physics of Fluids
      Article . 2024 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • Authors: Hangzhao Liu; Huan Li; Hanfeng Wang; Ce Li; +2 Authors

    The present paper examines the vortex-induced vibration (VIV) of a 5:1 rectangular cylinder with a detached splitter in its near wake. The tested gap ratio between the cylinder and the splitter (g/D, where g is the gap between the cylinder rear and the splitter and D is the depth of the rectangular cylinder) ranges from 0.5 to 2.0, with an increment of 0.5. To serve as a reference case, the rectangular cylinder without the splitter is also tested under the same conditions. The test Reynolds number ranges from 32 320 to 56 507. This study delves into the vibration response, pressure distributions, and power spectral densities (PSD) of the cylinder under varying gap ratios. Based on qualitative and quantitative analyses between the cylinder and the splitter using phase average techniques, smoke-wire visualization, and numerical simulation, the different vortex shedding modes according to different gap ratios were identified. Experimental and numerical results show that the detached splitter and its gap ratio play important roles in determining the cylinder VIV properties. For g/D = 0.5, the detached splitter has a sensible mitigation on the cylinder VIV. However, as the gap ratio increases, the VIV response initially recovers to the reference case at g/D = 1.0 and subsequently enlarges at g/D = 1.5 and 2.0. The pressure distribution results showed that the detached splitter demonstrates its effects primarily through fluctuations in the pressure field rather than the mean field. In addition, at g/D = 0.5, a sensibly decayed PSD is observed, while at g/D = 1.0–2.0, an intensified PSD is detected. The underlying mechanism of the detached splitter on the VIV of the 5:1 rectangular cylinder should be attributed to the von Kármán vortex street compared to the reference case.

    Physics of Fluidsarrow_drop_down
    Physics of Fluids
    Article . 2024 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      Physics of Fluidsarrow_drop_down
      Physics of Fluids
      Article . 2024 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph