- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Moldir Rakhimova; Tie Liu; Sanim Bissenbayeva; Yerbolat Mukanov; Khusen Sh. Gafforov; Zhuldyzay Bekpergenova; Aminjon Gulakhmadov;doi: 10.3390/su12124968
The variations of climate and water resources in the Buqtyrma River Basin (BRB), which is located at the cross-section of the Altai Mountains, Eurasian Steppe and Tian Shan Mountains, have a great significance for agriculture and ecosystems in the region. Changing climatic conditions will change the hydrological cycle in the whole basin. In this study, we examined the historical trends and change points of the climate and hydrological variables, the contributions of climate change and human activities to runoff changes, and the relative changes in the runoff to the precipitation and potential evapotranspiration from 1950 to 2015 by using the Mann–Kendall trend test, Pettitt test, double cumulative curve and elasticities methods. In addition, a multi-model ensemble (MME) of the six general circulation models (GCMs) for two future periods (2036–2065 and 2071–2100) was assessed to estimate the spatio-temporal variations in precipitation and temperature under two representative concentration pathways (RCPs 4.5 and 8.5) scenarios. Our study detected that the runoff change-point occurred in 1982. The impacts induced by climate change on runoff change were as follows—70% in the upstream, 62.11% in the midstream and 15.34% in the downstream area. The impacts of human activity on runoff change were greater in the downstream area (84.66%) than in the upstream and midstream areas. A continuously increasing trend was indicated regarding average annual temperature under RCP 4.5 (from 0.37 to 0.33 °C/decade) and under RCP 8.5 (from 0.50 to 0.61 °C/decade) during two future periods. Additionally, an increasing trend in predicted precipitation was exhibited under RCP 4.5 (13.6% and 19.9%) and under RCP 8.5 (10.5% and 18.1%) during both future periods. The results of the relative runoff changes to the predicted precipitation and potential evapotranspiration were expected to increase during two future time periods under RCP 4.5 (18.53% and 25.40%) and under RCP 8.5 (8.91% and 13.38%) relative to the base period. The present work can provide a reference for the utilization and management of regional water resources and for ecological environment protection.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/12/4968/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12124968&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/12/4968/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12124968&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Khusen Sh. Gafforov; Anming Bao; Shavkat Rakhimov; Tie Liu; Farkhod Abdullaev; Liangliang Jiang; Khaydar Durdiev; Eldiiar Duulatov; Moldir Rakhimova; Yerbolat Mukanov;doi: 10.3390/su12083369
Changes in the frequency or intensity of rainfall due to climate always affect the conservation of soil resources, which leads to land degradation. The importance of assessing past and future climate differences plays an important role in future planning in relation to climate change. The spatiotemporal variability of erosivity depending on precipitation using the rainfall erosivity (R) of Universal Soil Loss Equation under the global circulation model (GCM) scenarios in the Chirchik–Akhangaran Basin (CHAB), which is in the northeastern part of the Republic of Uzbekistan, was statistically downscaled by using the delta method in Representative Concentration Pathways (RCPs) 4.5 and 8.5 during the periods of the 2030s, 2050s and 2070s. The (R) was used to determine the erosivity of precipitation, and the Revised Universal Soil Loss Equation (RUSLE) itself determined the effects of changes in erosivity. Ten weather station observational data points for the period from 1990 to 2016 were used to validate the global circulation models (GCMs) and erosion model. The assessment results showed an increase in precipitation from the baseline by an average of 11.8%, 14.1% and 16.3% for all models by 2030, 2050 and 2070, respectively, while at the same time, soil loss increased in parallel with precipitation by 17.1%, 20.5 % and 23.3%, respectively, in certain scenarios. The highest rainfall was observed for the models ACCESS1–3 and CanESM2 on both RCPs and periods, while more intense rainfall was the main reason for the increase in the spatial and temporal erosion activity of the rainfall-runoff. This study is a useful reference for improving soil conservation, preventing water erosion and ensuring the future sustainability of agricultural products, as well as improving the operational management and planning of agriculture.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3369/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3369/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Moldir Rakhimova; Tie Liu; Sanim Bissenbayeva; Yerbolat Mukanov; Khusen Sh. Gafforov; Zhuldyzay Bekpergenova; Aminjon Gulakhmadov;doi: 10.3390/su12124968
The variations of climate and water resources in the Buqtyrma River Basin (BRB), which is located at the cross-section of the Altai Mountains, Eurasian Steppe and Tian Shan Mountains, have a great significance for agriculture and ecosystems in the region. Changing climatic conditions will change the hydrological cycle in the whole basin. In this study, we examined the historical trends and change points of the climate and hydrological variables, the contributions of climate change and human activities to runoff changes, and the relative changes in the runoff to the precipitation and potential evapotranspiration from 1950 to 2015 by using the Mann–Kendall trend test, Pettitt test, double cumulative curve and elasticities methods. In addition, a multi-model ensemble (MME) of the six general circulation models (GCMs) for two future periods (2036–2065 and 2071–2100) was assessed to estimate the spatio-temporal variations in precipitation and temperature under two representative concentration pathways (RCPs 4.5 and 8.5) scenarios. Our study detected that the runoff change-point occurred in 1982. The impacts induced by climate change on runoff change were as follows—70% in the upstream, 62.11% in the midstream and 15.34% in the downstream area. The impacts of human activity on runoff change were greater in the downstream area (84.66%) than in the upstream and midstream areas. A continuously increasing trend was indicated regarding average annual temperature under RCP 4.5 (from 0.37 to 0.33 °C/decade) and under RCP 8.5 (from 0.50 to 0.61 °C/decade) during two future periods. Additionally, an increasing trend in predicted precipitation was exhibited under RCP 4.5 (13.6% and 19.9%) and under RCP 8.5 (10.5% and 18.1%) during both future periods. The results of the relative runoff changes to the predicted precipitation and potential evapotranspiration were expected to increase during two future time periods under RCP 4.5 (18.53% and 25.40%) and under RCP 8.5 (8.91% and 13.38%) relative to the base period. The present work can provide a reference for the utilization and management of regional water resources and for ecological environment protection.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/12/4968/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12124968&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/12/4968/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12124968&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Khusen Sh. Gafforov; Anming Bao; Shavkat Rakhimov; Tie Liu; Farkhod Abdullaev; Liangliang Jiang; Khaydar Durdiev; Eldiiar Duulatov; Moldir Rakhimova; Yerbolat Mukanov;doi: 10.3390/su12083369
Changes in the frequency or intensity of rainfall due to climate always affect the conservation of soil resources, which leads to land degradation. The importance of assessing past and future climate differences plays an important role in future planning in relation to climate change. The spatiotemporal variability of erosivity depending on precipitation using the rainfall erosivity (R) of Universal Soil Loss Equation under the global circulation model (GCM) scenarios in the Chirchik–Akhangaran Basin (CHAB), which is in the northeastern part of the Republic of Uzbekistan, was statistically downscaled by using the delta method in Representative Concentration Pathways (RCPs) 4.5 and 8.5 during the periods of the 2030s, 2050s and 2070s. The (R) was used to determine the erosivity of precipitation, and the Revised Universal Soil Loss Equation (RUSLE) itself determined the effects of changes in erosivity. Ten weather station observational data points for the period from 1990 to 2016 were used to validate the global circulation models (GCMs) and erosion model. The assessment results showed an increase in precipitation from the baseline by an average of 11.8%, 14.1% and 16.3% for all models by 2030, 2050 and 2070, respectively, while at the same time, soil loss increased in parallel with precipitation by 17.1%, 20.5 % and 23.3%, respectively, in certain scenarios. The highest rainfall was observed for the models ACCESS1–3 and CanESM2 on both RCPs and periods, while more intense rainfall was the main reason for the increase in the spatial and temporal erosion activity of the rainfall-runoff. This study is a useful reference for improving soil conservation, preventing water erosion and ensuring the future sustainability of agricultural products, as well as improving the operational management and planning of agriculture.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3369/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3369/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu