- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Wael Mostafa; Zenhom Magd; Saif M. Abo Khashaba; Belal Abdelaziz; Ehab Hendawy; Abdelaziz Elfadaly; Mohsen Nabil; Dmitry E. Kucher; Shuisen Chen; Elsayed Said Mohamed;doi: 10.3390/su151813497
Anthropogenic activities affect the surrounding environment dynamically in different ways. In the arid and hyper arid, agriculture is concentrated in rural communities, which are cooling surfaces that help mitigate surface temperature increases. Recently, rural communities are suffering from increasing urban sprawl. The current work focuses on evaluating the changes in land cover and their impacts on land surface temperature (LST) during (1988–2022) and predicting the changes until 2056 in El-Reyad District, Kafrelsheikh Governorate, Egypt. For achieving this purpose, Landsat images (TM, ETM+, and OLI) were used. The support vector machine (SVM) was applied using Google Earth Engine (GEE) to monitor changes in land use/cover and LST. The prediction of land use until 2056 was achieved using the CA-Markov simulation model. The results showed six land cover classes: agricultural lands, bare lands, urban areas, natural vegetation, Lake Burullus, and fish farms. The results showed the effects of human activity on the conversion of agricultural land to other activities, as agricultural lands have decreased by about 3950.8 acres, while urban areas have expanded by 6283.2 acres, from 1988 to 2022. Fish farms have increased from 3855.6 to 17,612 acres from 1988 to 2022. While the area of bare land decreased from 28.3% to 0.7% of the total area, it was converted to urban, agricultural, and fish farms. The spatiotemporal change in land cover affected the balance of LST in the study area, although the average temperature increased from 32.4 ± 0.5 to 33.6 ± 0.2 °C. In addition, it is expected to reach 36 ± 0.5 °C in 2056, and there are some areas with decreased LST where it is converted from bare areas into fish farms and agricultural uses. The prediction results show that the agricultural area will decrease by −11.38%, the urban area will increase by 4.6%, and the fish farms area will increase by 6.1%. Thus, preserving green spaces and reducing urban sprawl in rural communities are very important objectives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Wiley Elfadaly Abdelaziz; Abutaleb Khaled; Naguib Doaa M; Mostafa Wael; Abouarab Mohamed A R; Ashmawy Aiman; Wilson Penelope; Lasaponara Rosa;doi: 10.1002/arp.1898
handle: 20.500.14243/459169
AbstractClimate change effects along with anthropogenic activities present the main factors that threaten the existence of heritage sites across the north Nile Delta of Egypt close to the coastline of the Mediterranean Sea. Observing the changes in the landscape close to the archaeological sites is an important issue for decision‐makers in terms of reducing the negative impact of natural events and human activities. The coastal heritage sites are becoming strongly threatened by the rising sea level phenomena that will happen due to global warming. Focusing on the distribution of the archaeological sites, this study aims to detect the areas at risk of shoreline erosion or accretion in the northern shoreline of the Nile Delta. In this study, the changes in the northern shoreline of the Nile Delta were observed and calculated during the last hundred years based on the integration between the old topographic maps from surveys in 1900, 1925 and 1945, optical satellite images captured by Landsat in 1972, 1986 and 2000; Sentinel2 2021; and the Radar SRTM data. The results of this study showed that the changes were enormous with a great shoreline erosion process over the last 121 years recorded along the shoreline in the periods between 1900–1925, 1925–1945, 1945–1972, 1972–1986, 1986–2000 and 2000–2021. The areas eroded were about 5.3, 4.7, 5.6, 8.9, 2.5 and 5.4 km2, respectively. Such negative movements caused the loss of two heritage sites, and the expected changes will lead to the loss of additional heritage sites in the next 500 years. Furthermore, a model was suggested for protecting the coastal heritage sites threatened by the risk of submergence. This study can help the decision‐makers to detect the coastal archaeological sites at risk and create innovative solutions for protecting these irreplaceable heritage sites.
IRIS Cnr arrow_drop_down Archaeological ProspectionArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/arp.1898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Archaeological ProspectionArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/arp.1898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Wael Mostafa; Zenhom Magd; Saif M. Abo Khashaba; Belal Abdelaziz; Ehab Hendawy; Abdelaziz Elfadaly; Mohsen Nabil; Dmitry E. Kucher; Shuisen Chen; Elsayed Said Mohamed;doi: 10.3390/su151813497
Anthropogenic activities affect the surrounding environment dynamically in different ways. In the arid and hyper arid, agriculture is concentrated in rural communities, which are cooling surfaces that help mitigate surface temperature increases. Recently, rural communities are suffering from increasing urban sprawl. The current work focuses on evaluating the changes in land cover and their impacts on land surface temperature (LST) during (1988–2022) and predicting the changes until 2056 in El-Reyad District, Kafrelsheikh Governorate, Egypt. For achieving this purpose, Landsat images (TM, ETM+, and OLI) were used. The support vector machine (SVM) was applied using Google Earth Engine (GEE) to monitor changes in land use/cover and LST. The prediction of land use until 2056 was achieved using the CA-Markov simulation model. The results showed six land cover classes: agricultural lands, bare lands, urban areas, natural vegetation, Lake Burullus, and fish farms. The results showed the effects of human activity on the conversion of agricultural land to other activities, as agricultural lands have decreased by about 3950.8 acres, while urban areas have expanded by 6283.2 acres, from 1988 to 2022. Fish farms have increased from 3855.6 to 17,612 acres from 1988 to 2022. While the area of bare land decreased from 28.3% to 0.7% of the total area, it was converted to urban, agricultural, and fish farms. The spatiotemporal change in land cover affected the balance of LST in the study area, although the average temperature increased from 32.4 ± 0.5 to 33.6 ± 0.2 °C. In addition, it is expected to reach 36 ± 0.5 °C in 2056, and there are some areas with decreased LST where it is converted from bare areas into fish farms and agricultural uses. The prediction results show that the agricultural area will decrease by −11.38%, the urban area will increase by 4.6%, and the fish farms area will increase by 6.1%. Thus, preserving green spaces and reducing urban sprawl in rural communities are very important objectives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Wiley Elfadaly Abdelaziz; Abutaleb Khaled; Naguib Doaa M; Mostafa Wael; Abouarab Mohamed A R; Ashmawy Aiman; Wilson Penelope; Lasaponara Rosa;doi: 10.1002/arp.1898
handle: 20.500.14243/459169
AbstractClimate change effects along with anthropogenic activities present the main factors that threaten the existence of heritage sites across the north Nile Delta of Egypt close to the coastline of the Mediterranean Sea. Observing the changes in the landscape close to the archaeological sites is an important issue for decision‐makers in terms of reducing the negative impact of natural events and human activities. The coastal heritage sites are becoming strongly threatened by the rising sea level phenomena that will happen due to global warming. Focusing on the distribution of the archaeological sites, this study aims to detect the areas at risk of shoreline erosion or accretion in the northern shoreline of the Nile Delta. In this study, the changes in the northern shoreline of the Nile Delta were observed and calculated during the last hundred years based on the integration between the old topographic maps from surveys in 1900, 1925 and 1945, optical satellite images captured by Landsat in 1972, 1986 and 2000; Sentinel2 2021; and the Radar SRTM data. The results of this study showed that the changes were enormous with a great shoreline erosion process over the last 121 years recorded along the shoreline in the periods between 1900–1925, 1925–1945, 1945–1972, 1972–1986, 1986–2000 and 2000–2021. The areas eroded were about 5.3, 4.7, 5.6, 8.9, 2.5 and 5.4 km2, respectively. Such negative movements caused the loss of two heritage sites, and the expected changes will lead to the loss of additional heritage sites in the next 500 years. Furthermore, a model was suggested for protecting the coastal heritage sites threatened by the risk of submergence. This study can help the decision‐makers to detect the coastal archaeological sites at risk and create innovative solutions for protecting these irreplaceable heritage sites.
IRIS Cnr arrow_drop_down Archaeological ProspectionArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/arp.1898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Archaeological ProspectionArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/arp.1898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu