- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Funder
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Funded by:UKRI | Barocaloric materials for...UKRI| Barocaloric materials for zero-carbon heat pumpsRoshan Hehar; William Burges; Thomas Fender; Jonathan Radcliffe; Neha Mehta;doi: 10.3390/en18030738
Decarbonising heat is critical for achieving net zero goals. This study investigates the deployment of heat pumps for decarbonising domestic heating in the United Kingdom (UK), focusing on a local analysis in the West Midlands and North West regions. Through detailed data modelling, including weather patterns, housing characteristics, and carbon intensity data, the study quantifies the potential carbon dioxide (CO2) emissions reductions associated with air source heat pump adoption compared to conventional gas boilers. In this study, hourly temperature data for 2022 were examined for six local authorities: Birmingham, Warwick, Shropshire, Manchester, Oldham, and West Lancashire. Additionally, half-hourly carbon intensity data for 2022 were used for the two wider regions, the West Midlands and the North West of England. Results demonstrated that the North West region stands out with the highest percentage CO2 reductions due to the relatively low carbon intensity associated with the electricity grid, reaching up to 33% for an uptake of 40% of air source heat pumps. Moreover, regions with a high prevalence of detached housing, such as Shropshire and West Lancashire, show promise for emissions reductions and require continued monitoring and support for heat pump adoption. Despite limitations in modelling techniques and data sources, this study provides valuable insights for policymakers and strategic planners, guiding efforts to combat climate change and promote environmental sustainability in the UK.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18030738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18030738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Funded by:UKRI | Barocaloric materials for...UKRI| Barocaloric materials for zero-carbon heat pumpsRoshan Hehar; William Burges; Thomas Fender; Jonathan Radcliffe; Neha Mehta;doi: 10.3390/en18030738
Decarbonising heat is critical for achieving net zero goals. This study investigates the deployment of heat pumps for decarbonising domestic heating in the United Kingdom (UK), focusing on a local analysis in the West Midlands and North West regions. Through detailed data modelling, including weather patterns, housing characteristics, and carbon intensity data, the study quantifies the potential carbon dioxide (CO2) emissions reductions associated with air source heat pump adoption compared to conventional gas boilers. In this study, hourly temperature data for 2022 were examined for six local authorities: Birmingham, Warwick, Shropshire, Manchester, Oldham, and West Lancashire. Additionally, half-hourly carbon intensity data for 2022 were used for the two wider regions, the West Midlands and the North West of England. Results demonstrated that the North West region stands out with the highest percentage CO2 reductions due to the relatively low carbon intensity associated with the electricity grid, reaching up to 33% for an uptake of 40% of air source heat pumps. Moreover, regions with a high prevalence of detached housing, such as Shropshire and West Lancashire, show promise for emissions reductions and require continued monitoring and support for heat pump adoption. Despite limitations in modelling techniques and data sources, this study provides valuable insights for policymakers and strategic planners, guiding efforts to combat climate change and promote environmental sustainability in the UK.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18030738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18030738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu