- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2022 Portugal, Finland, Portugal, ItalyPublisher:Wiley Funded by:AKA | Consequences of climate-d..., UKRI | Supply chain for power el..., AKA | Geographic variation in t... +1 projectsAKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,UKRI| Supply chain for power electronic devices ,AKA| Geographic variation in the impacts of land use changes on ecosystem stability (GILES) ,AKA| Seeing the forest for the trees: Using research synthesis to verify and integrate the ecological theories that explain patterns in insect herbivoryDe Marco, A; Sicard, P; Feng, Z; Agathokleous, E; Alonso, R; Araminiene, V; Augustatis, A; Badea, O; Beasley, J; Branquinho, C; Bruckman, V; Collalti, A; David‐Schwartz, R; Domingos, M; Du, E; Garcia Gomez, H; Hashimoto, S; Hoshika, Y; Jakovljevic, T; McNulty, S; Oksanen, E; Omidi Khaniabadi, Y; Prescher, AK; Saitanis, C; Sase, H; Schmitz, A; Voigt, G; Watanabe, M; Wood, M; Kozlov, M; Paoletti, E;doi: 10.1111/gcb.16278
pmid: 35642454
pmc: PMC9541114
handle: 20.500.14243/441513 , 20.500.12079/68071
doi: 10.1111/gcb.16278
pmid: 35642454
pmc: PMC9541114
handle: 20.500.14243/441513 , 20.500.12079/68071
AbstractAlthough it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux‐based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long‐term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long‐term monitoring programs.
CORE arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2022License: CC BYFull-Text: http://dx.doi.org/10.1111/gcb.16278Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2022License: CC BYFull-Text: http://dx.doi.org/10.1111/gcb.16278Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2022 Portugal, Finland, Portugal, ItalyPublisher:Wiley Funded by:AKA | Consequences of climate-d..., UKRI | Supply chain for power el..., AKA | Geographic variation in t... +1 projectsAKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,UKRI| Supply chain for power electronic devices ,AKA| Geographic variation in the impacts of land use changes on ecosystem stability (GILES) ,AKA| Seeing the forest for the trees: Using research synthesis to verify and integrate the ecological theories that explain patterns in insect herbivoryDe Marco, A; Sicard, P; Feng, Z; Agathokleous, E; Alonso, R; Araminiene, V; Augustatis, A; Badea, O; Beasley, J; Branquinho, C; Bruckman, V; Collalti, A; David‐Schwartz, R; Domingos, M; Du, E; Garcia Gomez, H; Hashimoto, S; Hoshika, Y; Jakovljevic, T; McNulty, S; Oksanen, E; Omidi Khaniabadi, Y; Prescher, AK; Saitanis, C; Sase, H; Schmitz, A; Voigt, G; Watanabe, M; Wood, M; Kozlov, M; Paoletti, E;doi: 10.1111/gcb.16278
pmid: 35642454
pmc: PMC9541114
handle: 20.500.14243/441513 , 20.500.12079/68071
doi: 10.1111/gcb.16278
pmid: 35642454
pmc: PMC9541114
handle: 20.500.14243/441513 , 20.500.12079/68071
AbstractAlthough it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux‐based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long‐term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long‐term monitoring programs.
CORE arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2022License: CC BYFull-Text: http://dx.doi.org/10.1111/gcb.16278Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2022License: CC BYFull-Text: http://dx.doi.org/10.1111/gcb.16278Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu