- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Mattias Gaglio; Mariano Bresciani; Nicola Ghirardi; Alexandra Nicoleta Muresan; Mattia Lanzoni; Fabio Vincenzi; Giuseppe Castaldelli; Elisa Anna Fano;doi: 10.3390/w14010117
handle: 20.500.14243/441245 , 11392/2471228 , 11381/2972918
Aquatic vegetation loss caused substantial decrease of ecosystem processes and services during the last decades, particularly for the capacity of these ecosystems to sequester and store carbon from the atmosphere. This study investigated the extent of aquatic emergent vegetation loss for the period 1985–2018 and the consequent effects on carbon sequestration and storage capacity of Valle Santa wetland, a protected freshwater wetland dominated by Phragmites australis located in the Po river delta Park (Northern Italy), as a function of primary productivity and biomass decomposition, assessed by means of satellite images and experimental measures. The results showed an extended loss of aquatic vegetated habitats during the considered period, with 1989 being the year with higher productivity. The mean breakdown rates of P. australis were 0.00532 d−1 and 0.00228 d−1 for leaf and stem carbon content, respectively, leading to a predicted annual decomposition of 64.6% of the total biomass carbon. For 2018 the carbon sequestration capacity was estimated equal to 0.249 kg C m−2 yr−1, while the carbon storage of the whole wetland was 1.75 × 103 t C (0.70 kg C m−2). Nonetheless, despite the protection efforts over time, the vegetation loss occurred during the last decades significantly decreased carbon sequestration and storage by 51.6%, when comparing 2018 and 1989. No statistically significant effects were found for water descriptors. This study demonstrated that P. australis-dominated wetlands support important ecosystem processes and should be regarded as an important carbon sink under an ecosystem services perspective, with the aim to maximize their capacity to mitigate climate change.
Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/1/117/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14010117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/1/117/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14010117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 ItalyPublisher:Springer Science and Business Media LLC Maria Pia Gervasio; Elisa Soana; Anna Gavioli; Fabio Vincenzi; Giuseppe Castaldelli;AbstractAn increase in water temperature is one of the main factors that can potentially modify biogeochemical dynamics in lowland rivers, such as the removal and recycling of nitrogen (N). This effect of climate change on N processing deserves attention, as it may have unexpected impacts on eutrophication in the coastal zones. Intact sediment cores were collected seasonally at the closing section of the Po River, the largest Italian river and one of the main N inputs to the Mediterranean Sea. Benthic oxygen fluxes, denitrification, and dissimilatory nitrate reduction to ammonium (DNRA) rates were measured using laboratory dark incubations. Different temperature treatments were set up for each season based on historical data and future predictions. Higher water temperatures enhanced sediment oxygen demand and the extent of hypoxic conditions in the benthic compartment, favoring anaerobic metabolism. Indeed, warming water temperature stimulated nitrate (NO3−) reduction processes, although NO3− and organic matter availability were found to be the main controlling factors shaping the rates between seasons. Denitrification was the main process responsible for NO3− removal, mainly supported by NO3− diffusion from the water column into the sediments, and much more important than N recycling via DNRA. The predicted increase in the water temperature of the Po River due to climate change may exert an unexpected negative feedback on eutrophication by strongly controlling denitrification and contributing to partial buffering of N export in the lagoons and coastal areas, especially in spring. Graphical Abstract
Archivio istituziona... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-024-34171-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-024-34171-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Mattias Gaglio; Mariano Bresciani; Nicola Ghirardi; Alexandra Nicoleta Muresan; Mattia Lanzoni; Fabio Vincenzi; Giuseppe Castaldelli; Elisa Anna Fano;doi: 10.3390/w14010117
handle: 20.500.14243/441245 , 11392/2471228 , 11381/2972918
Aquatic vegetation loss caused substantial decrease of ecosystem processes and services during the last decades, particularly for the capacity of these ecosystems to sequester and store carbon from the atmosphere. This study investigated the extent of aquatic emergent vegetation loss for the period 1985–2018 and the consequent effects on carbon sequestration and storage capacity of Valle Santa wetland, a protected freshwater wetland dominated by Phragmites australis located in the Po river delta Park (Northern Italy), as a function of primary productivity and biomass decomposition, assessed by means of satellite images and experimental measures. The results showed an extended loss of aquatic vegetated habitats during the considered period, with 1989 being the year with higher productivity. The mean breakdown rates of P. australis were 0.00532 d−1 and 0.00228 d−1 for leaf and stem carbon content, respectively, leading to a predicted annual decomposition of 64.6% of the total biomass carbon. For 2018 the carbon sequestration capacity was estimated equal to 0.249 kg C m−2 yr−1, while the carbon storage of the whole wetland was 1.75 × 103 t C (0.70 kg C m−2). Nonetheless, despite the protection efforts over time, the vegetation loss occurred during the last decades significantly decreased carbon sequestration and storage by 51.6%, when comparing 2018 and 1989. No statistically significant effects were found for water descriptors. This study demonstrated that P. australis-dominated wetlands support important ecosystem processes and should be regarded as an important carbon sink under an ecosystem services perspective, with the aim to maximize their capacity to mitigate climate change.
Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/1/117/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14010117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/1/117/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14010117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 ItalyPublisher:Springer Science and Business Media LLC Maria Pia Gervasio; Elisa Soana; Anna Gavioli; Fabio Vincenzi; Giuseppe Castaldelli;AbstractAn increase in water temperature is one of the main factors that can potentially modify biogeochemical dynamics in lowland rivers, such as the removal and recycling of nitrogen (N). This effect of climate change on N processing deserves attention, as it may have unexpected impacts on eutrophication in the coastal zones. Intact sediment cores were collected seasonally at the closing section of the Po River, the largest Italian river and one of the main N inputs to the Mediterranean Sea. Benthic oxygen fluxes, denitrification, and dissimilatory nitrate reduction to ammonium (DNRA) rates were measured using laboratory dark incubations. Different temperature treatments were set up for each season based on historical data and future predictions. Higher water temperatures enhanced sediment oxygen demand and the extent of hypoxic conditions in the benthic compartment, favoring anaerobic metabolism. Indeed, warming water temperature stimulated nitrate (NO3−) reduction processes, although NO3− and organic matter availability were found to be the main controlling factors shaping the rates between seasons. Denitrification was the main process responsible for NO3− removal, mainly supported by NO3− diffusion from the water column into the sediments, and much more important than N recycling via DNRA. The predicted increase in the water temperature of the Po River due to climate change may exert an unexpected negative feedback on eutrophication by strongly controlling denitrification and contributing to partial buffering of N export in the lagoons and coastal areas, especially in spring. Graphical Abstract
Archivio istituziona... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-024-34171-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-024-34171-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu