- home
- Advanced Search
Filters
Year range
-chevron_right GO
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Owen O’Connor; Tarek Elfouly; Ali Alouani;doi: 10.3390/en16166043
There are many real-world applications that require high-performance mobile computing systems for onboard, real-time processing of gathered data due to latency, reliability, security, or other application constraints. Unfortunately, most existing high-performance mobile computing systems require a prohibitively high power consumption in the face of the limited power available from the batteries typically used in these applications. For high-performance mobile computing to be practical, alternative hardware designs are needed to increase the computing performance while minimizing the required power consumption. This article surveys the state-of-the-art in high-efficiency, high-performance onboard mobile computing, focusing on the latest developments. It was found that more research is needed to design high-performance mobile computing systems while minimizing the required power consumption to meet the needs of these applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16166043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16166043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Owen O’Connor; Tarek Elfouly; Ali Alouani;doi: 10.3390/en16166043
There are many real-world applications that require high-performance mobile computing systems for onboard, real-time processing of gathered data due to latency, reliability, security, or other application constraints. Unfortunately, most existing high-performance mobile computing systems require a prohibitively high power consumption in the face of the limited power available from the batteries typically used in these applications. For high-performance mobile computing to be practical, alternative hardware designs are needed to increase the computing performance while minimizing the required power consumption. This article surveys the state-of-the-art in high-efficiency, high-performance onboard mobile computing, focusing on the latest developments. It was found that more research is needed to design high-performance mobile computing systems while minimizing the required power consumption to meet the needs of these applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16166043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16166043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu