- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:American Chemical Society (ACS) Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne; Terada, Akihiko; Schreiber, Frank; Zhou, Qi; Smets, Barth F.;doi: 10.1021/es1013467
pmid: 20815378
One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed a difficulty in reducing the abundance and activity of nitrite oxidizing bacteria (NOB), which drastically lowers process efficiency. Here we show how sequential aeration is an effective strategy to attain autotrophic N removal in MABRs: Two separate MABRs, which displayed limited or no N removal under continuous aeration, could remove more than 5.5 g N/m(2)/day (at loads up to 8 g N/m(2)/day) by controlled variation of sequential aeration regimes. Daily averaged ratios of the surficial loads of O(2) (oxygen) to NH(4)(+) (ammonium) (L(O(2))/L(NH(4))) were close to 1.73 at this optimum. Real-time quantitative PCR based on 16S rRNA gene confirmed that sequential aeration, even at elevated average O(2) loads, stimulated the abundance of AnAOB and AOB and prevented the increase in NOB. Nitrous oxide (N(2)O) emissions were 100-fold lower compared to other anaerobic ammonium oxidation (Anammox)-nitritation systems. Hence, by applying periodic aeration to MABRs, one-stage autotrophic N removal biofilm reactors can be easily obtained, displaying very competitive removal rates, and negligible N(2)O emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es1013467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu113 citations 113 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es1013467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Carles Pellicer-Nàcher; Carlos Domingo-Félez; A. Gizem Mutlu; Barth F. Smets;pmid: 23866135
Extracellular polymeric substances (EPS) have a presumed determinant role in the structure, architecture, strength, filterability, and settling behaviour of microbial solids in biological wastewater treatment processes. Consequently, numerous EPS extraction protocols have recently been published that aim to optimize the trade off between high EPS recovery and low cell lysis. Despite extensive efforts, the obtained results are often contradictory, even when analysing similar biomass samples and using similar experimental conditions, which greatly complicates the selection of an extraction protocol. This study presents a rigorous and critical assessment of existing physical and chemical EPS extraction methods applied to mixed-culture biomass samples (nitrifying, nitritation-anammox, and activated sludge biomass). A novel fluorescence-based method was developed and calibrated to quantify the lysis potential of different EPS extraction protocols. We concluded that commonly used methods to assess cell lysis (DNA concentrations or G6PDH activities in EPS extracts) do not correlate with cell viability. Furthermore, we discovered that the presence of certain chemicals in EPS extracts results in severe underestimation of protein and carbohydrate concentrations by using standard analytical methods. Keeping both maximum EPS extraction yields and minimal biomass lysis as criteria, it was identified a sonication-based extraction method as the best to determine and compare tightly-bound EPS fractions in different biomass samples. Protein was consistently the main EPS component in all analysed samples. However, EPS from nitrifying enrichments was richer in DNA, the activated sludge EPS had a higher content in humic acids and carbohydrates, and the nitritation-anammox EPS, while similar in composition to the nitrifier EPS, had a lower fraction of hydrophobic biopolymers. In general, the easily-extractable EPS fraction was more abundant in carbohydrates and humic substances, while DNA could only be found in tightly bound EPS fractions. In conclusion, the methodology presented herein supports the rational selection of analytical tools and EPS extraction protocols in further EPS characterization studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2013.06.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu132 citations 132 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2013.06.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:American Chemical Society (ACS) Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne; Terada, Akihiko; Schreiber, Frank; Zhou, Qi; Smets, Barth F.;doi: 10.1021/es1013467
pmid: 20815378
One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed a difficulty in reducing the abundance and activity of nitrite oxidizing bacteria (NOB), which drastically lowers process efficiency. Here we show how sequential aeration is an effective strategy to attain autotrophic N removal in MABRs: Two separate MABRs, which displayed limited or no N removal under continuous aeration, could remove more than 5.5 g N/m(2)/day (at loads up to 8 g N/m(2)/day) by controlled variation of sequential aeration regimes. Daily averaged ratios of the surficial loads of O(2) (oxygen) to NH(4)(+) (ammonium) (L(O(2))/L(NH(4))) were close to 1.73 at this optimum. Real-time quantitative PCR based on 16S rRNA gene confirmed that sequential aeration, even at elevated average O(2) loads, stimulated the abundance of AnAOB and AOB and prevented the increase in NOB. Nitrous oxide (N(2)O) emissions were 100-fold lower compared to other anaerobic ammonium oxidation (Anammox)-nitritation systems. Hence, by applying periodic aeration to MABRs, one-stage autotrophic N removal biofilm reactors can be easily obtained, displaying very competitive removal rates, and negligible N(2)O emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es1013467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu113 citations 113 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es1013467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Carles Pellicer-Nàcher; Carlos Domingo-Félez; A. Gizem Mutlu; Barth F. Smets;pmid: 23866135
Extracellular polymeric substances (EPS) have a presumed determinant role in the structure, architecture, strength, filterability, and settling behaviour of microbial solids in biological wastewater treatment processes. Consequently, numerous EPS extraction protocols have recently been published that aim to optimize the trade off between high EPS recovery and low cell lysis. Despite extensive efforts, the obtained results are often contradictory, even when analysing similar biomass samples and using similar experimental conditions, which greatly complicates the selection of an extraction protocol. This study presents a rigorous and critical assessment of existing physical and chemical EPS extraction methods applied to mixed-culture biomass samples (nitrifying, nitritation-anammox, and activated sludge biomass). A novel fluorescence-based method was developed and calibrated to quantify the lysis potential of different EPS extraction protocols. We concluded that commonly used methods to assess cell lysis (DNA concentrations or G6PDH activities in EPS extracts) do not correlate with cell viability. Furthermore, we discovered that the presence of certain chemicals in EPS extracts results in severe underestimation of protein and carbohydrate concentrations by using standard analytical methods. Keeping both maximum EPS extraction yields and minimal biomass lysis as criteria, it was identified a sonication-based extraction method as the best to determine and compare tightly-bound EPS fractions in different biomass samples. Protein was consistently the main EPS component in all analysed samples. However, EPS from nitrifying enrichments was richer in DNA, the activated sludge EPS had a higher content in humic acids and carbohydrates, and the nitritation-anammox EPS, while similar in composition to the nitrifier EPS, had a lower fraction of hydrophobic biopolymers. In general, the easily-extractable EPS fraction was more abundant in carbohydrates and humic substances, while DNA could only be found in tightly bound EPS fractions. In conclusion, the methodology presented herein supports the rational selection of analytical tools and EPS extraction protocols in further EPS characterization studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2013.06.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu132 citations 132 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2013.06.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu