- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- Restricted
- Open Source
- Embargo
- 15. Life on land
- 14. Life underwater
- Energy Research
- Open Access
- Closed Access
- Restricted
- Open Source
- Embargo
- 15. Life on land
- 14. Life underwater
Research data keyboard_double_arrow_right Dataset 2017Publisher:Chalmers University of Technology Authors: Englund, Oskar;Brazil is home to the largest tracts of tropical vegetation in the world, harbouring high levels of biodiversity and carbon. Several biomass maps have been produced for Brazil, using different approaches and methods, and for different purposes. These maps have been used to estimate historic, recent, and future carbon emissions from land use change (LUC). It can be difficult to determine which map to use for what purpose. The implications of using an unsuitable map can be significant, since the maps have large differences—both in terms of total carbon storage and its spatial distribution. This dataset of aboveground carbon was created based on data from existing maps and an up-to-date LULC map. The map reflects current LULC, has high accuracy and resolution (50 m), and a national coverage. It can be a useful alternative for scientific studies and policy initiatives concerned with existing LULC and LUC outside of existing forests, especially at local scales when high resolution is necessary, and/or outside the Amazon biome. Map unit: tonnes of aboveground carbon per hectare. This dataset of aboveground carbon was created based on data from existing maps and an up-to-date LULC map. The map reflects current LULC, has high accuracy and resolution (50 m), and a national coverage. It can be a useful alternative for scientific studies and policy initiatives concerned with existing LULC and LUC outside of existing forests, especially at local scales when high resolution is necessary, and/or outside the Amazon biome. Map unit: tonnes of aboveground carbon per hectare. Data är baserade på befintliga kartor och en aktuell LULC-karta (änding av markanvändning) för bildandet av ovanjordiskt kol i Brasilien. Kartan speglar nuvarande LULC, har hög noggrannhet och upplösning (50 m) och en nationell täckning. Mer information på den engelska katalogsidan: https://snd.gu.se/en/catalogue/study/ecds0244 This dataset of aboveground carbon was created based on data from existing maps and an up-to-date LULC map. The map reflects current LULC, has high accuracy and resolution (50 m), and a national coverage. It can be a useful alternative for scientific studies and policy initiatives concerned with existing LULC and LUC outside of existing forests, especially at local scales when high resolution is necessary, and/or outside the Amazon biome. Map unit: tonnes of aboveground carbon per hectare.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5879/ecds/2017-09-12.1/1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5879/ecds/2017-09-12.1/1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Pieck, Daniela; Thölen, Claudia; Hillebrand, Helmut; Kleyer, Michael; Lõhmus, Kertu; Zielinski, Oliver;Local tide and wave conditions were recorded with a RBRduo TDǀwave sensor (RBR Ltd., Ontario/Canada). The sensor was bottom mounted in a shallow tidal creek (0.78 m NHN) through a steel girder (buried 0.3m deep in the sediment) and was positioned 10 cm above sediment surface, as was determined by using a portable differential GPS. This resulted in the sensor falling dry during low tide. For accurate depth calculations, raw pressure data were manually corrected for atmospheric pressure derived from a locally installed weather station. The sensor was pre-calibrated by the manufacturer and the sampling rate was 3 Hz with 1024 samples per burst at a sample interval of 10 min. Recorded data were internally logged until the readout with the Ruskin (V1.13.13) software. Date and time is given in UTC.Data handling was performed according to Zielinski et al. (2018): Post-processing of collected data was done using MATLAB (R2018a). Quality control was performed by (a) erasing data covering maintenance activities, (b) removing outliers, and (c) visually checks. Low-tide data is not removed, but were easily identified through the manually calculated water depth data, where all depths < 0.05m represented low tide data.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 13 Apr 2022Publisher:Dryad Gao, Guang; Beardall, John; Jin, Peng; Gao, Lin; Xie, Shuyu; Gao, Kunshan;The atmosphere concentration of CO2 is steadily increasing and causing climate change. To achieve the Paris 1.5 or 2 oC target, negative emissions technologies must be deployed in addition to reducing carbon emissions. The ocean is a large carbon sink but the potential of marine primary producers to contribute to carbon neutrality remains unclear. Here we review the alterations to carbon capture and sequestration of marine primary producers (including traditional ‘blue carbon’ plants, microalgae, and macroalgae) in the Anthropocene, and, for the first time, assess and compare the potential of various marine primary producers to carbon neutrality and climate change mitigation via biogeoengineering approaches. The contributions of marine primary producers to carbon sequestration have been decreasing in the Anthropocene due to the decrease in biomass driven by direct anthropogenic activities and climate change. The potential of blue carbon plants (mangroves, saltmarshes, and seagrasses) is limited by the available areas for their revegetation. Microalgae appear to have a large potential due to their ubiquity but how to enhance their carbon sequestration efficiency is very complex and uncertain. On the other hand, macroalgae can play an essential role in mitigating climate change through extensive offshore cultivation due to higher carbon sequestration capacity and substantial available areas. This approach seems both technically and economically feasible due to the development of offshore aquaculture and a well-established market for macroalgal products. Synthesis and applications: This paper provides new insights and suggests promising directions for utilizing marine primary producers to achieve the Paris temperature target. We propose that macroalgae cultivation can play an essential role in attaining carbon neutrality and climate change mitigation, although its ecological impacts need to be assessed further. To calculate the parameters presented in Table 1, the relevant keywords "mangroves, salt marshes, macroalgae, microalgae, global area, net primary productivity, CO2 sequestration" were searched through the ISI Web of Science and Google Scholar in July 2021. Recent data published after 2010 were collected and used since area and productivity of plants change with decade. For data with limited availability, such as net primary productivity (NPP) of seagrasses and global area and NPP of wild macroalgae, data collection was extended back to 1980. Total NPP and CO2 sequestration for mangroves, salt marshes, seagrasses and wild macroalgae were obtained by the multiplication of area and NPP/CO2 sequestration density and subjected to error propagation analysis. Data were expressed as means ± standard error.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 17 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Publisher:PANGAEA Authors: Snejana Moncheva; Ludmila G Senichkina; Dennis Altukhov;The samples were concentrated down to 50 cm**3 by slow decantation after storage for 20 days in a cool and dark place. The species identification was done under light microscope OLIMPUS–BS41 connected to a video-interactive image analysis system at magnification of the ocular 10X and objective – 40X. A Sedgwick-Rafter camera (1ml) was used for counting. 400 specimen were counted for each sample, while rare and large species were checked in the whole sample (Manual of phytoplankton, 2005). Species identification was mainly after Carmelo T. (1997) and Fukuyo, Y. (2000).Taxon-specific phytoplankton abundance and biomass were analysed by Moncheva S., B. Parr, 2005. Manual for Phytoplankton Sampling and Analysis in the Black Sea.The cell biovolume was determined based on morpho-metric measurement of phytoplankton units and the corresponding geometric shapes as described in detail in (Edier, 1979).
B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2015License: CC BYData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.848553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2015License: CC BYData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.848553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | REINFORCEEC| REINFORCEAuthors: Mina, Marco;Input files for the ForClim model (version 4.0.1) used in the associated paper. They can be used to to reproduce results of the simulation study. The ForClim model, including the source code, executable and documentation, is freely available under an Open Access license from the website of the original developers at https://ites-fe.ethz.ch/openaccess/. The original climatic dataset used to generate the ForClim input climate files at each site in South Tyrol is freely available at https://doi.pangaea.de/10.1594/PANGAEA.924502 while the CHELSA climate data for future scenarios are available at https://www.chelsa-climate.org. If interested in using this dataset for a research study or a project, please contact Marco Mina ----------------------------------------------------------------------- Hillebrand L, Marzini S, Crespi A, Hiltner U & Mina M (2023) Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change, 6, 2023 https://doi.org/10.3389/ffgc.2023.1240235 ABSTRACT. Protection forests play a key role in protecting settlements, people, and infrastructures from gravitational hazards such as rockfalls and avalanches in mountain areas. Rapid climate change is challenging the role of protection forests by altering their dynamics, structure, and composition. Information on local- and regional-scale impacts of climate change on protection forests is critical for planning adaptations in forest management. We used a model of forest dynamics (ForClim) to assess the succession of mountain forests in the Eastern Alps and their protective effects under future climate change scenarios. We investigated eleven representative forest sites along an elevational gradient across multiple locations within an administrative region, covering wide differences in tree species structure, composition, altitude, and exposition. We evaluated protective performance against rockfall and avalanches using numerical indices (i.e., linker functions) quantifying the degree of protection from metrics of simulated forest structure and composition. Our findings reveal that climate warming has a contrasting impact on protective effects in mountain forests of the Eastern Alps. Climate change is likely to not affect negatively all protection forest stands but its impact depends on site and stand conditions. Impacts were highly contingent to the magnitude of climate warming, with increasing criticality under the most severe climate projections. Forests in lower-montane elevations and those located in dry continental valleys showed drastic changes in forest structure and composition due to drought-induced mortality while subalpine forests mostly profited from rising temperatures and a longer vegetation period. Overall, avalanche protection will likely be negatively affected by climate change, while the ability of forests to maintain rockfall protection depends on the severity of expected climate change and their vulnerability due to elevation and topography, with most subalpine forests less prone to loosing protective effects. Proactive measures in management should be taken in the near future to avoid losses of protective effects in the case of severe climate change in the Alps. Given the heterogeneous impact of climate warming, such adaptations can be aided by model-based projections and high local resolution studies to identify forest stand types that might require management priority for maintaining protective effects in the future.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 2 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Dryad Leahy, Lily; Scheffers, Brett R.; Andersen, Alan N.; Hirsch, Ben T.; Williams, Stephen E.;Aim: We propose that forest trees create a vertical dimension for ecological niche variation that generates different regimes of climatic exposure, which in turn drives species elevation distributions. We test this hypothesis by statistically modelling the vertical and elevation distributions and microclimate exposure of rainforest ants. Location: Wet Tropics Bioregion, Australia Methods: We conducted 60 ground-to-canopy surveys to determine the vertical (tree) and elevation distributions, and microclimate exposure of ants (101 species) at 15 sites along four mountain ranges. We statistically modelled elevation range size as a function of ant species’ vertical niche breadth and exposure to temperature variance for 55 species found at two or more trees. Results: We found a positive association between vertical niche and elevation range of ant species: for every 3 m increase in vertical niche breadth our models predict a ~150% increase in mean elevation range size. Temperature variance increased with vertical height along the arboreal gradient and ant species exposure to temperature variance explained some of the variation in elevation range size. Main Conclusions: We demonstrate that arboreal ants have broader elevation ranges than ground-dwelling ants and are likely to have increased resilience to climatic variance. The capacity of species to expand their niche by climbing trees could influence their ability to persist over broader elevation ranges. We propose that wherever vertical layering exists - from oceans to forest ecosystems - vertical niche breadth is a potential mechanism driving macrogeographic distribution patterns and resilience to climate change. Data_collections.csv Main survey collections data in a site by species matrix showing all data for all sites surveyed. Tuna baited vials were placed every three metres from ground to canopy in trees at elevation sites at four subregion mountain ranges of the Australian Wet Tropics Bioregion. Note data file includes empty vials that lacked ants. Microclimate_AthertonTemp.csv This file contains Atherton Uplands temperature data from ibuttons deployed at one tree per elevation (200, 400, 600, 800, 1000) at every three metres in height in Dec-Jan 2017- 2018 set to record every half hour. See file Metadata for details of column names and data values.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9ghx3ffg3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 34 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9ghx3ffg3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MOHC.HadGEM3-GC31-MM.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The HadGEM3-GC3.1-N216ORCA025 climate model, released in 2016, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N216; 432 x 324 longitude/latitude; 85 levels; top level 85 km), land: JULES-HadGEM3-GL7.1, ocean: NEMO-HadGEM3-GO6.0 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: CICE-HadGEM3-GSI8 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude). The model was run by the Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, EX1 3PB, UK (MOHC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmohgmhi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmohgmhi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Stouffer, Ronald;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.UA.MCM-UA-1-0' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Manabe Climate Model v1.0 - University of Arizona climate model, released in 1991, includes the following components: aerosol: Modifies surface albedoes (Haywood et al. 1997, doi: 10.1175/1520-0442(1997)010<1562:GCMCOT>2.0.CO;2), atmos: R30L14 (3.75 X 2.5 degree (long-lat) configuration; 96 x 80 longitude/latitude; 14 levels; top level 0.015 sigma, 15 mb), land: Standard Manabe bucket hydrology scheme (Manabe 1969, doi: 10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2), landIce: Specified location - invariant in time, has high albedo and latent heat capacity, ocean: MOM1.0 (MOM1, 1.875 X 2.5 deg; 192 x 80 longitude/latitude; 18 levels; top grid cell 0-40 m), seaIce: Thermodynamic ice model (free drift dynamics). The model was run by the Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA (UA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: 250 km, ocean: 250 km, seaIce: 250 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spuamu&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spuamu&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 14 Sep 2018Publisher:Harvard Dataverse Authors: Hap, Navy;doi: 10.7910/dvn/7qhibo
The database focused in both culture and capture, are susceptible to the impacts of climate change. The data collection to examine the vulnerability, as perceived by snakehead (Channa striata) fish farmers in Vietnam and fishers in Cambodia, to the impacts from climate change. Perceived impacts on various actors in the value chain are identified, as well as adaptation strategies currently being utilized and planned for the future and perception suggested to contribute to assisting snakehead farmers and fishers in adapting and preparing for the impacts of climate change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/7qhibo&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/7qhibo&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 1999Publisher:PANGAEA Authors: Lukas, Roger; Karl, David Michael;Nets are towed obliquely at approx. 1 knot, from the surface to approx. 175 m. Towing time is approx. 20 minutes. Zooplankton (weak swimmers >200µm) are collected using oblique tows of a 1 m**2 net (3m length) with 202µm mesh Nitex netting.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.82465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.82465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2017Publisher:Chalmers University of Technology Authors: Englund, Oskar;Brazil is home to the largest tracts of tropical vegetation in the world, harbouring high levels of biodiversity and carbon. Several biomass maps have been produced for Brazil, using different approaches and methods, and for different purposes. These maps have been used to estimate historic, recent, and future carbon emissions from land use change (LUC). It can be difficult to determine which map to use for what purpose. The implications of using an unsuitable map can be significant, since the maps have large differences—both in terms of total carbon storage and its spatial distribution. This dataset of aboveground carbon was created based on data from existing maps and an up-to-date LULC map. The map reflects current LULC, has high accuracy and resolution (50 m), and a national coverage. It can be a useful alternative for scientific studies and policy initiatives concerned with existing LULC and LUC outside of existing forests, especially at local scales when high resolution is necessary, and/or outside the Amazon biome. Map unit: tonnes of aboveground carbon per hectare. This dataset of aboveground carbon was created based on data from existing maps and an up-to-date LULC map. The map reflects current LULC, has high accuracy and resolution (50 m), and a national coverage. It can be a useful alternative for scientific studies and policy initiatives concerned with existing LULC and LUC outside of existing forests, especially at local scales when high resolution is necessary, and/or outside the Amazon biome. Map unit: tonnes of aboveground carbon per hectare. Data är baserade på befintliga kartor och en aktuell LULC-karta (änding av markanvändning) för bildandet av ovanjordiskt kol i Brasilien. Kartan speglar nuvarande LULC, har hög noggrannhet och upplösning (50 m) och en nationell täckning. Mer information på den engelska katalogsidan: https://snd.gu.se/en/catalogue/study/ecds0244 This dataset of aboveground carbon was created based on data from existing maps and an up-to-date LULC map. The map reflects current LULC, has high accuracy and resolution (50 m), and a national coverage. It can be a useful alternative for scientific studies and policy initiatives concerned with existing LULC and LUC outside of existing forests, especially at local scales when high resolution is necessary, and/or outside the Amazon biome. Map unit: tonnes of aboveground carbon per hectare.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5879/ecds/2017-09-12.1/1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5879/ecds/2017-09-12.1/1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Pieck, Daniela; Thölen, Claudia; Hillebrand, Helmut; Kleyer, Michael; Lõhmus, Kertu; Zielinski, Oliver;Local tide and wave conditions were recorded with a RBRduo TDǀwave sensor (RBR Ltd., Ontario/Canada). The sensor was bottom mounted in a shallow tidal creek (0.78 m NHN) through a steel girder (buried 0.3m deep in the sediment) and was positioned 10 cm above sediment surface, as was determined by using a portable differential GPS. This resulted in the sensor falling dry during low tide. For accurate depth calculations, raw pressure data were manually corrected for atmospheric pressure derived from a locally installed weather station. The sensor was pre-calibrated by the manufacturer and the sampling rate was 3 Hz with 1024 samples per burst at a sample interval of 10 min. Recorded data were internally logged until the readout with the Ruskin (V1.13.13) software. Date and time is given in UTC.Data handling was performed according to Zielinski et al. (2018): Post-processing of collected data was done using MATLAB (R2018a). Quality control was performed by (a) erasing data covering maintenance activities, (b) removing outliers, and (c) visually checks. Low-tide data is not removed, but were easily identified through the manually calculated water depth data, where all depths < 0.05m represented low tide data.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 13 Apr 2022Publisher:Dryad Gao, Guang; Beardall, John; Jin, Peng; Gao, Lin; Xie, Shuyu; Gao, Kunshan;The atmosphere concentration of CO2 is steadily increasing and causing climate change. To achieve the Paris 1.5 or 2 oC target, negative emissions technologies must be deployed in addition to reducing carbon emissions. The ocean is a large carbon sink but the potential of marine primary producers to contribute to carbon neutrality remains unclear. Here we review the alterations to carbon capture and sequestration of marine primary producers (including traditional ‘blue carbon’ plants, microalgae, and macroalgae) in the Anthropocene, and, for the first time, assess and compare the potential of various marine primary producers to carbon neutrality and climate change mitigation via biogeoengineering approaches. The contributions of marine primary producers to carbon sequestration have been decreasing in the Anthropocene due to the decrease in biomass driven by direct anthropogenic activities and climate change. The potential of blue carbon plants (mangroves, saltmarshes, and seagrasses) is limited by the available areas for their revegetation. Microalgae appear to have a large potential due to their ubiquity but how to enhance their carbon sequestration efficiency is very complex and uncertain. On the other hand, macroalgae can play an essential role in mitigating climate change through extensive offshore cultivation due to higher carbon sequestration capacity and substantial available areas. This approach seems both technically and economically feasible due to the development of offshore aquaculture and a well-established market for macroalgal products. Synthesis and applications: This paper provides new insights and suggests promising directions for utilizing marine primary producers to achieve the Paris temperature target. We propose that macroalgae cultivation can play an essential role in attaining carbon neutrality and climate change mitigation, although its ecological impacts need to be assessed further. To calculate the parameters presented in Table 1, the relevant keywords "mangroves, salt marshes, macroalgae, microalgae, global area, net primary productivity, CO2 sequestration" were searched through the ISI Web of Science and Google Scholar in July 2021. Recent data published after 2010 were collected and used since area and productivity of plants change with decade. For data with limited availability, such as net primary productivity (NPP) of seagrasses and global area and NPP of wild macroalgae, data collection was extended back to 1980. Total NPP and CO2 sequestration for mangroves, salt marshes, seagrasses and wild macroalgae were obtained by the multiplication of area and NPP/CO2 sequestration density and subjected to error propagation analysis. Data were expressed as means ± standard error.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 17 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Publisher:PANGAEA Authors: Snejana Moncheva; Ludmila G Senichkina; Dennis Altukhov;The samples were concentrated down to 50 cm**3 by slow decantation after storage for 20 days in a cool and dark place. The species identification was done under light microscope OLIMPUS–BS41 connected to a video-interactive image analysis system at magnification of the ocular 10X and objective – 40X. A Sedgwick-Rafter camera (1ml) was used for counting. 400 specimen were counted for each sample, while rare and large species were checked in the whole sample (Manual of phytoplankton, 2005). Species identification was mainly after Carmelo T. (1997) and Fukuyo, Y. (2000).Taxon-specific phytoplankton abundance and biomass were analysed by Moncheva S., B. Parr, 2005. Manual for Phytoplankton Sampling and Analysis in the Black Sea.The cell biovolume was determined based on morpho-metric measurement of phytoplankton units and the corresponding geometric shapes as described in detail in (Edier, 1979).
B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2015License: CC BYData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.848553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2015License: CC BYData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.848553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | REINFORCEEC| REINFORCEAuthors: Mina, Marco;Input files for the ForClim model (version 4.0.1) used in the associated paper. They can be used to to reproduce results of the simulation study. The ForClim model, including the source code, executable and documentation, is freely available under an Open Access license from the website of the original developers at https://ites-fe.ethz.ch/openaccess/. The original climatic dataset used to generate the ForClim input climate files at each site in South Tyrol is freely available at https://doi.pangaea.de/10.1594/PANGAEA.924502 while the CHELSA climate data for future scenarios are available at https://www.chelsa-climate.org. If interested in using this dataset for a research study or a project, please contact Marco Mina ----------------------------------------------------------------------- Hillebrand L, Marzini S, Crespi A, Hiltner U & Mina M (2023) Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change, 6, 2023 https://doi.org/10.3389/ffgc.2023.1240235 ABSTRACT. Protection forests play a key role in protecting settlements, people, and infrastructures from gravitational hazards such as rockfalls and avalanches in mountain areas. Rapid climate change is challenging the role of protection forests by altering their dynamics, structure, and composition. Information on local- and regional-scale impacts of climate change on protection forests is critical for planning adaptations in forest management. We used a model of forest dynamics (ForClim) to assess the succession of mountain forests in the Eastern Alps and their protective effects under future climate change scenarios. We investigated eleven representative forest sites along an elevational gradient across multiple locations within an administrative region, covering wide differences in tree species structure, composition, altitude, and exposition. We evaluated protective performance against rockfall and avalanches using numerical indices (i.e., linker functions) quantifying the degree of protection from metrics of simulated forest structure and composition. Our findings reveal that climate warming has a contrasting impact on protective effects in mountain forests of the Eastern Alps. Climate change is likely to not affect negatively all protection forest stands but its impact depends on site and stand conditions. Impacts were highly contingent to the magnitude of climate warming, with increasing criticality under the most severe climate projections. Forests in lower-montane elevations and those located in dry continental valleys showed drastic changes in forest structure and composition due to drought-induced mortality while subalpine forests mostly profited from rising temperatures and a longer vegetation period. Overall, avalanche protection will likely be negatively affected by climate change, while the ability of forests to maintain rockfall protection depends on the severity of expected climate change and their vulnerability due to elevation and topography, with most subalpine forests less prone to loosing protective effects. Proactive measures in management should be taken in the near future to avoid losses of protective effects in the case of severe climate change in the Alps. Given the heterogeneous impact of climate warming, such adaptations can be aided by model-based projections and high local resolution studies to identify forest stand types that might require management priority for maintaining protective effects in the future.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 2 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Dryad Leahy, Lily; Scheffers, Brett R.; Andersen, Alan N.; Hirsch, Ben T.; Williams, Stephen E.;Aim: We propose that forest trees create a vertical dimension for ecological niche variation that generates different regimes of climatic exposure, which in turn drives species elevation distributions. We test this hypothesis by statistically modelling the vertical and elevation distributions and microclimate exposure of rainforest ants. Location: Wet Tropics Bioregion, Australia Methods: We conducted 60 ground-to-canopy surveys to determine the vertical (tree) and elevation distributions, and microclimate exposure of ants (101 species) at 15 sites along four mountain ranges. We statistically modelled elevation range size as a function of ant species’ vertical niche breadth and exposure to temperature variance for 55 species found at two or more trees. Results: We found a positive association between vertical niche and elevation range of ant species: for every 3 m increase in vertical niche breadth our models predict a ~150% increase in mean elevation range size. Temperature variance increased with vertical height along the arboreal gradient and ant species exposure to temperature variance explained some of the variation in elevation range size. Main Conclusions: We demonstrate that arboreal ants have broader elevation ranges than ground-dwelling ants and are likely to have increased resilience to climatic variance. The capacity of species to expand their niche by climbing trees could influence their ability to persist over broader elevation ranges. We propose that wherever vertical layering exists - from oceans to forest ecosystems - vertical niche breadth is a potential mechanism driving macrogeographic distribution patterns and resilience to climate change. Data_collections.csv Main survey collections data in a site by species matrix showing all data for all sites surveyed. Tuna baited vials were placed every three metres from ground to canopy in trees at elevation sites at four subregion mountain ranges of the Australian Wet Tropics Bioregion. Note data file includes empty vials that lacked ants. Microclimate_AthertonTemp.csv This file contains Atherton Uplands temperature data from ibuttons deployed at one tree per elevation (200, 400, 600, 800, 1000) at every three metres in height in Dec-Jan 2017- 2018 set to record every half hour. See file Metadata for details of column names and data values.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9ghx3ffg3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 34 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9ghx3ffg3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MOHC.HadGEM3-GC31-MM.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The HadGEM3-GC3.1-N216ORCA025 climate model, released in 2016, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N216; 432 x 324 longitude/latitude; 85 levels; top level 85 km), land: JULES-HadGEM3-GL7.1, ocean: NEMO-HadGEM3-GO6.0 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: CICE-HadGEM3-GSI8 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude). The model was run by the Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, EX1 3PB, UK (MOHC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmohgmhi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmohgmhi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Stouffer, Ronald;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.UA.MCM-UA-1-0' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Manabe Climate Model v1.0 - University of Arizona climate model, released in 1991, includes the following components: aerosol: Modifies surface albedoes (Haywood et al. 1997, doi: 10.1175/1520-0442(1997)010<1562:GCMCOT>2.0.CO;2), atmos: R30L14 (3.75 X 2.5 degree (long-lat) configuration; 96 x 80 longitude/latitude; 14 levels; top level 0.015 sigma, 15 mb), land: Standard Manabe bucket hydrology scheme (Manabe 1969, doi: 10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2), landIce: Specified location - invariant in time, has high albedo and latent heat capacity, ocean: MOM1.0 (MOM1, 1.875 X 2.5 deg; 192 x 80 longitude/latitude; 18 levels; top grid cell 0-40 m), seaIce: Thermodynamic ice model (free drift dynamics). The model was run by the Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA (UA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: 250 km, ocean: 250 km, seaIce: 250 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spuamu&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spuamu&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 14 Sep 2018Publisher:Harvard Dataverse Authors: Hap, Navy;doi: 10.7910/dvn/7qhibo
The database focused in both culture and capture, are susceptible to the impacts of climate change. The data collection to examine the vulnerability, as perceived by snakehead (Channa striata) fish farmers in Vietnam and fishers in Cambodia, to the impacts from climate change. Perceived impacts on various actors in the value chain are identified, as well as adaptation strategies currently being utilized and planned for the future and perception suggested to contribute to assisting snakehead farmers and fishers in adapting and preparing for the impacts of climate change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/7qhibo&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/7qhibo&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 1999Publisher:PANGAEA Authors: Lukas, Roger; Karl, David Michael;Nets are towed obliquely at approx. 1 knot, from the surface to approx. 175 m. Towing time is approx. 20 minutes. Zooplankton (weak swimmers >200µm) are collected using oblique tows of a 1 m**2 net (3m length) with 202µm mesh Nitex netting.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.82465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.82465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu