- home
- Advanced Search
- Energy Research
- Open Access
- Open Source
- Embargo
- Energy Reports
- Energy Research
- Open Access
- Open Source
- Embargo
- Energy Reports
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Dániel Nagy; Tibor Princz- Jakovics;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2025.05.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2025.05.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Mathiyalagan SivaramKrishnan; Nagarajan Kathirvel; Chandrasekaran Kumar; Sourav Barua;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2024.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2024.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Rasmus Jakobsen; Chunjun Huang; Tonny W. Rasmussen; Shi You;This paper presents grid-code considerations that must be addressed when connecting large electrolyzer plants to the electrical grid. A model for an electrolyzer module based on a grid-connected three-phase H-bridge converter is presented, together with a scaling method, for investigating relevant aspects. A low-voltage-ride-through strategy is implemented into the converter and the performance of the strategy is tested against running the system with no low-voltage-ride-through strategy. Finally, the paper will conclude on the ability of the electrolyzer plant to provide reactive power support and the considerations that must be made if this support is desired.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.09.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.09.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Stefan Leiprecht; Fabian Behrens; Till Faber; Matthias Finkenrath;Precise forecasting of thermal loads is a critical factor for economic and efficient operation of district heating and cooling networks. If thermal loads are known with high accuracy in advance, use of renewable energies can be maximized, and – in combination with thermal storage units – fossil generation, in particular in peaking units, can be avoided. Machine learning has proven to be a powerful tool for time series forecasting, and has demonstrated significant advancements in recent years. This paper presents the scientific methodology and first results of the publicly funded research project “deepDHC”, which aims at a broad benchmarking of traditional and advanced machine learning methods for thermal load forecasting in district heating and cooling applications. The analysis covers autoregressive forecasting approaches, decision trees such as “adaptive boosting”, but also latest “deep learning” techniques such as the “long short-term memory” (LSTM) neural network. This work is based on data from the district heating network of the city of Ulm in Germany. First, different performance metrics for evaluating forecasting qualities are introduced. Second, approaches for data screening and results of a linear and non-linear correlation analysis are presented. Third, the machine learning tuning process is described. For thermal load forecasting, weather data are key input parameters. This work uses hourly weather forecasts from weather models provided by the German meteorological service. These weather data are updated automatically, and have been statistically corrected in order to represent very accurate point forecasts for up to ten days ahead. In addition, a user-friendly web interface has been developed for use by the district heating network operator. The performance of different machine-learning algorithms is compared based on 72 h heating load forecasts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.08.140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.08.140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: I.V. Filimonova; O.I. Krivosheeva; M.V. Mishenin;Solution of environmental and climate issues remains relevant today. Since the signing of the Paris Agreements in 2015 many countries have begun to change legislative provisions and introduce new regulations aimed at reducing greenhouse gas emissions and reducing the environmental load on the environment. The authors pay special attention to the problem of disposal of municipal solid waste (MSW) and consideration of this process as a climate project. The aim of the study is to develop an economic model of MSW utilization and assess the economic effect of applying the mechanism of public–private partnership (PPP) on the example of the Novosibirsk region. The research method is a comprehensive simulation modeling with the use of assessment of investment projects’ efficiency. The model takes into account the possibility of providing containers for separate waste collection (SWC-containers) to all residents of Novosibirsk and the expansion of facilities for the collection and sorting of MSW. It is shown that the state support in the form of public–private partnership is crucial. Participation of the state in the project implementation contributes to provision of the city with a sufficient number of infrastructure facilities related to accumulation and utilization of MSW to reduce landfills and greenhouse gas emissions from them. The authors proposed to enhance the positive effect of the climate project by conducting an environmental marathon for the population. The expected results of the marathon were confirmed in practice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.11.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.11.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016Publisher:Elsevier BV Authors: Hentschel, Julia; Babić, Ugljes˘a; Spliethoff, Hartmut;AbstractConventional generation units encounter a changing role in modern societies’ energy supply. With increased need for flexible operation, engineers and project managers have to evaluate the benefits of technical improvements. For this purpose, a valuation tool has been developed, comparing economical cornerstones and technical constraints of generation units to European Energy Exchange prices for PHELIX 2014. It enables the user to relate a change in technical parameters to an economic effect and possible revenues. Four different types of conventional power plants are investigated in scenarios with increasing CO2 and fuel prices to determine the impact of different flexibility options. Results show that an increased ramp rate has not the same magnitude of positive economic impact as reduced minimum operation load, based on an observation on a price signal with resolution of fifteen minutes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2016.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2016.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 02 Feb 2024 SwitzerlandPublisher:Elsevier BV Mokhtar Benasla; Imane Boukhatem; Tayeb Allaoui; Abderrahmane Berkani; Petr Korba; Felix Rafael Segundo Sevilla; Mohamed Belfedel;The idea of exporting dispatchable solar electricity from the North African region to Europe is still the subject of several bilateral meetings, workshops, and conferences, despite doubts and previous failures with the Desertec concept. Given that each North African country has its own privacy policy, energy strategy, and distinct approach to the concept of renewable energy exports, while the potential of renewable energy sources varies from country to country, it would be very helpful to assess the potential and export opportunities of each country. In this respect, this paper focuses on the potential of Algeria. Several key factors that can make Algeria an attractive place to supply Europe with dispatchable solar electricity have been identified and discussed. The factors have been identified from the European perspective and can be used to analyze the potentials of neighboring countries. The barriers that could impede the export of dispatchable solar electricity from Algeria to Europe have also been identified. Based on certain given criteria, the paper provides some scenarios of possible solar electricity import corridors from Algeria to Europe. This work is timely as the Algerian government has expressed interest in exporting its surplus electricity to Europe and is studying an electricity interconnection project with Italy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.11.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.11.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NorwayPublisher:Elsevier BV Sambeet Mishra; Esin Ören; Chiara Bordin; Fushuan Wen; Ivo Palu;handle: 10037/20492
In the European renewable energy portfolio, wind has a sizeable share in the total energy production. The Nordic and Baltic energy systems in particular are benefiting from wind energy to reach the greenhouse gas emissions reduction objectives set by the EU. The wind energy production varies with time, and this intermittent characteristic imposes a challenge for full utilization of renewable energy potential. The power system operator needs to ensure timely power supply of demand. An accurate estimation of power output from a non-dispatchable generation resource such as a wind farm is essential for the operator to ensure the supply–demand balance and adequate sizing of reserve power capacity. Existing methods of feature extraction and prediction such as linear regression often overlook the significant variations or do not utilize in the model building. However, this method misinterprets the trend in data. Understanding the properties of the variations in more details would reduce the uncertainty and significantly improve the feature extraction to aid in decision making. Furthermore, as the volume, shape and type of dataset start to increase and new methods are required to extract meaningful information from the patterns in the big data. The objective of the paper is to present a novel Ramping BehaviourAnalysis (RBAθ) model that identifies and quantifies the variations in a time-varying dataset. The variations are classified into significant and stationary events. The former refers to the significant swings beyond a set threshold range and the latter refers to the swings that are relatively within the threshold limits. The features associated to each event include start time, end time, change in magnitude, persistence of an event, angle at which the event took place and frequency of occurrences of the features. In addition, the rain-flow cycles count is extracted from the original data for each event as a sum of half cycles and full cycles. The model is validated using simulated wind power production data from a virtual wind park spread across Estonia and the results are elaborated. The spatial dynamics of the virtual windfarm are captured through localized spatial autocorrelation of the events with the geospatial locations of the turbines. The results demonstrate that RBAθprecisely and accurately identify and quantify the time varying power generation into events with subsequent features. The volume of the data is significantly reduced in the process of summarizing time series data into a series of events. Thereby RBAθcan be also used for data compression and reconstruction with minor losses. The system operators can use the proposed algorithm in operational scheduling, maintenance and investment-capacity building decisions.
Energy Reports arrow_drop_down Munin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Reports arrow_drop_down Munin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Sheikh Safiullah; Asadur Rahman; Shameem Ahmad Lone; S.M. Suhail Hussain; Taha Selim Ustun;The advent of modern artificial intelligence methods for performance improvement of optimal control strategy has paved a way for providing a reliable operation of power systems. Based on the modern advancements in such techniques, the present paper provides a detailed comparison for finding the optimal control strategy using such techniques. This is exhibited by developing a novel control strategy in the form of a 2nd order active disturbance rejection controller for concurrent frequency-voltage control of a hybrid power system. The hybrid power system comprises of renewable generations in the form of solar-thermal, wind plants. Moreover, the modern day electric vehicles (EVs) are also incorporated as energy storage and operate in vehicle-to-grid mode. The developed control strategy is compared with established industrial controllers to prove its dominance based on concurrent frequency-voltage control of the hybrid power system. Firstly, the controller gains are optimized using magnetotactic bacteria optimization (MBO) technique. Then, the developed control strategy is tuned using artificial neural network (ANN) methodology. Based on the simulation outcomes, the results for frequency deviations, voltage deviations and tie-line power deviations are compared with MBO and ANN optimized 2nd order active disturbance rejection controller. The simulations are carried out on one-area, two-area and standard IEEE-39 bus power systems for in depth validation. Results show that the ANN optimized 2nd order active disturbance rejection controller has superior performance with respect to MBO optimized one. The effects of modern day EVs and renewable generations on the power system is studied broadly.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.08.272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.08.272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Y. Elhenawy; G.H. Moustafa; S.M.S. Abdel-Hamid; M. Bassyouni; M.M. Elsakka;Experimental investigations of an air gap membrane distillation (AGMD) unit were carried out to study the energy-saving by heat recovery. The spiral air gap membrane module in the water desalination unit was used. The unit was configured to operate in two novel arrangements and designed to minimize the loss of heat within the drains which maximize the unit productivity as well as the thermal efficiency. Water of salt concentrations 10,000 ppm and 20,000 ppm were used. Measurements of the heat source in the form of inlet and outlet temperatures, water productivity, and thermal efficiency are conducted for different flow rates of coolant and water feeds. The new arrangements are found to save much of the supplied heat, minimize the heat loss, and maximize the unit performance. An enhancement of 38.62% in the water productivity was achieved compared to the conventional AGMD unit. The considered heat recovery system showed water productivity of 155.92 m3/year for the proposed fresh potable water system with a cost of $12.85 per m3.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.06.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.06.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Dániel Nagy; Tibor Princz- Jakovics;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2025.05.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2025.05.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Mathiyalagan SivaramKrishnan; Nagarajan Kathirvel; Chandrasekaran Kumar; Sourav Barua;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2024.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2024.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Rasmus Jakobsen; Chunjun Huang; Tonny W. Rasmussen; Shi You;This paper presents grid-code considerations that must be addressed when connecting large electrolyzer plants to the electrical grid. A model for an electrolyzer module based on a grid-connected three-phase H-bridge converter is presented, together with a scaling method, for investigating relevant aspects. A low-voltage-ride-through strategy is implemented into the converter and the performance of the strategy is tested against running the system with no low-voltage-ride-through strategy. Finally, the paper will conclude on the ability of the electrolyzer plant to provide reactive power support and the considerations that must be made if this support is desired.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.09.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.09.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Stefan Leiprecht; Fabian Behrens; Till Faber; Matthias Finkenrath;Precise forecasting of thermal loads is a critical factor for economic and efficient operation of district heating and cooling networks. If thermal loads are known with high accuracy in advance, use of renewable energies can be maximized, and – in combination with thermal storage units – fossil generation, in particular in peaking units, can be avoided. Machine learning has proven to be a powerful tool for time series forecasting, and has demonstrated significant advancements in recent years. This paper presents the scientific methodology and first results of the publicly funded research project “deepDHC”, which aims at a broad benchmarking of traditional and advanced machine learning methods for thermal load forecasting in district heating and cooling applications. The analysis covers autoregressive forecasting approaches, decision trees such as “adaptive boosting”, but also latest “deep learning” techniques such as the “long short-term memory” (LSTM) neural network. This work is based on data from the district heating network of the city of Ulm in Germany. First, different performance metrics for evaluating forecasting qualities are introduced. Second, approaches for data screening and results of a linear and non-linear correlation analysis are presented. Third, the machine learning tuning process is described. For thermal load forecasting, weather data are key input parameters. This work uses hourly weather forecasts from weather models provided by the German meteorological service. These weather data are updated automatically, and have been statistically corrected in order to represent very accurate point forecasts for up to ten days ahead. In addition, a user-friendly web interface has been developed for use by the district heating network operator. The performance of different machine-learning algorithms is compared based on 72 h heating load forecasts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.08.140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.08.140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: I.V. Filimonova; O.I. Krivosheeva; M.V. Mishenin;Solution of environmental and climate issues remains relevant today. Since the signing of the Paris Agreements in 2015 many countries have begun to change legislative provisions and introduce new regulations aimed at reducing greenhouse gas emissions and reducing the environmental load on the environment. The authors pay special attention to the problem of disposal of municipal solid waste (MSW) and consideration of this process as a climate project. The aim of the study is to develop an economic model of MSW utilization and assess the economic effect of applying the mechanism of public–private partnership (PPP) on the example of the Novosibirsk region. The research method is a comprehensive simulation modeling with the use of assessment of investment projects’ efficiency. The model takes into account the possibility of providing containers for separate waste collection (SWC-containers) to all residents of Novosibirsk and the expansion of facilities for the collection and sorting of MSW. It is shown that the state support in the form of public–private partnership is crucial. Participation of the state in the project implementation contributes to provision of the city with a sufficient number of infrastructure facilities related to accumulation and utilization of MSW to reduce landfills and greenhouse gas emissions from them. The authors proposed to enhance the positive effect of the climate project by conducting an environmental marathon for the population. The expected results of the marathon were confirmed in practice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.11.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.11.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016Publisher:Elsevier BV Authors: Hentschel, Julia; Babić, Ugljes˘a; Spliethoff, Hartmut;AbstractConventional generation units encounter a changing role in modern societies’ energy supply. With increased need for flexible operation, engineers and project managers have to evaluate the benefits of technical improvements. For this purpose, a valuation tool has been developed, comparing economical cornerstones and technical constraints of generation units to European Energy Exchange prices for PHELIX 2014. It enables the user to relate a change in technical parameters to an economic effect and possible revenues. Four different types of conventional power plants are investigated in scenarios with increasing CO2 and fuel prices to determine the impact of different flexibility options. Results show that an increased ramp rate has not the same magnitude of positive economic impact as reduced minimum operation load, based on an observation on a price signal with resolution of fifteen minutes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2016.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2016.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 02 Feb 2024 SwitzerlandPublisher:Elsevier BV Mokhtar Benasla; Imane Boukhatem; Tayeb Allaoui; Abderrahmane Berkani; Petr Korba; Felix Rafael Segundo Sevilla; Mohamed Belfedel;The idea of exporting dispatchable solar electricity from the North African region to Europe is still the subject of several bilateral meetings, workshops, and conferences, despite doubts and previous failures with the Desertec concept. Given that each North African country has its own privacy policy, energy strategy, and distinct approach to the concept of renewable energy exports, while the potential of renewable energy sources varies from country to country, it would be very helpful to assess the potential and export opportunities of each country. In this respect, this paper focuses on the potential of Algeria. Several key factors that can make Algeria an attractive place to supply Europe with dispatchable solar electricity have been identified and discussed. The factors have been identified from the European perspective and can be used to analyze the potentials of neighboring countries. The barriers that could impede the export of dispatchable solar electricity from Algeria to Europe have also been identified. Based on certain given criteria, the paper provides some scenarios of possible solar electricity import corridors from Algeria to Europe. This work is timely as the Algerian government has expressed interest in exporting its surplus electricity to Europe and is studying an electricity interconnection project with Italy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.11.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.11.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NorwayPublisher:Elsevier BV Sambeet Mishra; Esin Ören; Chiara Bordin; Fushuan Wen; Ivo Palu;handle: 10037/20492
In the European renewable energy portfolio, wind has a sizeable share in the total energy production. The Nordic and Baltic energy systems in particular are benefiting from wind energy to reach the greenhouse gas emissions reduction objectives set by the EU. The wind energy production varies with time, and this intermittent characteristic imposes a challenge for full utilization of renewable energy potential. The power system operator needs to ensure timely power supply of demand. An accurate estimation of power output from a non-dispatchable generation resource such as a wind farm is essential for the operator to ensure the supply–demand balance and adequate sizing of reserve power capacity. Existing methods of feature extraction and prediction such as linear regression often overlook the significant variations or do not utilize in the model building. However, this method misinterprets the trend in data. Understanding the properties of the variations in more details would reduce the uncertainty and significantly improve the feature extraction to aid in decision making. Furthermore, as the volume, shape and type of dataset start to increase and new methods are required to extract meaningful information from the patterns in the big data. The objective of the paper is to present a novel Ramping BehaviourAnalysis (RBAθ) model that identifies and quantifies the variations in a time-varying dataset. The variations are classified into significant and stationary events. The former refers to the significant swings beyond a set threshold range and the latter refers to the swings that are relatively within the threshold limits. The features associated to each event include start time, end time, change in magnitude, persistence of an event, angle at which the event took place and frequency of occurrences of the features. In addition, the rain-flow cycles count is extracted from the original data for each event as a sum of half cycles and full cycles. The model is validated using simulated wind power production data from a virtual wind park spread across Estonia and the results are elaborated. The spatial dynamics of the virtual windfarm are captured through localized spatial autocorrelation of the events with the geospatial locations of the turbines. The results demonstrate that RBAθprecisely and accurately identify and quantify the time varying power generation into events with subsequent features. The volume of the data is significantly reduced in the process of summarizing time series data into a series of events. Thereby RBAθcan be also used for data compression and reconstruction with minor losses. The system operators can use the proposed algorithm in operational scheduling, maintenance and investment-capacity building decisions.
Energy Reports arrow_drop_down Munin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Reports arrow_drop_down Munin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Sheikh Safiullah; Asadur Rahman; Shameem Ahmad Lone; S.M. Suhail Hussain; Taha Selim Ustun;The advent of modern artificial intelligence methods for performance improvement of optimal control strategy has paved a way for providing a reliable operation of power systems. Based on the modern advancements in such techniques, the present paper provides a detailed comparison for finding the optimal control strategy using such techniques. This is exhibited by developing a novel control strategy in the form of a 2nd order active disturbance rejection controller for concurrent frequency-voltage control of a hybrid power system. The hybrid power system comprises of renewable generations in the form of solar-thermal, wind plants. Moreover, the modern day electric vehicles (EVs) are also incorporated as energy storage and operate in vehicle-to-grid mode. The developed control strategy is compared with established industrial controllers to prove its dominance based on concurrent frequency-voltage control of the hybrid power system. Firstly, the controller gains are optimized using magnetotactic bacteria optimization (MBO) technique. Then, the developed control strategy is tuned using artificial neural network (ANN) methodology. Based on the simulation outcomes, the results for frequency deviations, voltage deviations and tie-line power deviations are compared with MBO and ANN optimized 2nd order active disturbance rejection controller. The simulations are carried out on one-area, two-area and standard IEEE-39 bus power systems for in depth validation. Results show that the ANN optimized 2nd order active disturbance rejection controller has superior performance with respect to MBO optimized one. The effects of modern day EVs and renewable generations on the power system is studied broadly.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.08.272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.08.272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Y. Elhenawy; G.H. Moustafa; S.M.S. Abdel-Hamid; M. Bassyouni; M.M. Elsakka;Experimental investigations of an air gap membrane distillation (AGMD) unit were carried out to study the energy-saving by heat recovery. The spiral air gap membrane module in the water desalination unit was used. The unit was configured to operate in two novel arrangements and designed to minimize the loss of heat within the drains which maximize the unit productivity as well as the thermal efficiency. Water of salt concentrations 10,000 ppm and 20,000 ppm were used. Measurements of the heat source in the form of inlet and outlet temperatures, water productivity, and thermal efficiency are conducted for different flow rates of coolant and water feeds. The new arrangements are found to save much of the supplied heat, minimize the heat loss, and maximize the unit performance. An enhancement of 38.62% in the water productivity was achieved compared to the conventional AGMD unit. The considered heat recovery system showed water productivity of 155.92 m3/year for the proposed fresh potable water system with a cost of $12.85 per m3.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.06.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.06.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu