- home
- Advanced Search
- Energy Research
- Open Access
- Open Source
- Energies
- Energy Research
- Open Access
- Open Source
- Energies
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Jeong-Un Yu; Kyu-Sang Cho; Sung-Won Park; Sung-Yong Son;doi: 10.3390/en17246249
Research on digital twins (DTs) in the power system field has mainly focused on implementing DTs for specific resources, while few studies on electric vehicle (EV)-based DT implementation have considered integration and interoperability between systems. This study introduces a DT-based EV system operation framework to address the aforementioned research gap. The framework implements individual EVs, charging stations, and charging station operators (CPOs) as DTs, enabling integrated operation with the power grid. The DT-based EV agent supports independent decision-making on power service participation by considering location information, distance, charging amount, spare time, and incentives. In addition, the CPO can establish an optimal incentive strategy to induce EV users to participate in grid power services. The proposed DT systems map information between EVs, charging stations, and the grid, enabling analysis and verification of the impact of participants on charging station operation, grid stability, and economic efficiency in an independent environment. The effectiveness and usability of the proposed framework were verified through a case study on an incentive-based demand response program.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Jeong-Un Yu; Kyu-Sang Cho; Sung-Won Park; Sung-Yong Son;doi: 10.3390/en17246249
Research on digital twins (DTs) in the power system field has mainly focused on implementing DTs for specific resources, while few studies on electric vehicle (EV)-based DT implementation have considered integration and interoperability between systems. This study introduces a DT-based EV system operation framework to address the aforementioned research gap. The framework implements individual EVs, charging stations, and charging station operators (CPOs) as DTs, enabling integrated operation with the power grid. The DT-based EV agent supports independent decision-making on power service participation by considering location information, distance, charging amount, spare time, and incentives. In addition, the CPO can establish an optimal incentive strategy to induce EV users to participate in grid power services. The proposed DT systems map information between EVs, charging stations, and the grid, enabling analysis and verification of the impact of participants on charging station operation, grid stability, and economic efficiency in an independent environment. The effectiveness and usability of the proposed framework were verified through a case study on an incentive-based demand response program.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:MDPI AG Authors: Jennifer Brucker; René Behmann; Wolfgang G. Bessler; Rainer Gasper;doi: 10.3390/en15072661
Lithium-ion batteries exhibit a dynamic voltage behaviour depending nonlinearly on current and state of charge. The modelling of lithium-ion batteries is therefore complicated and model parametrisation is often time demanding. Grey-box models combine physical and data-driven modelling to benefit from their respective advantages. Neural ordinary differential equations (NODEs) offer new possibilities for grey-box modelling. Differential equations given by physical laws and NODEs can be combined in a single modelling framework. Here we demonstrate the use of NODEs for grey-box modelling of lithium-ion batteries. A simple equivalent circuit model serves as a basis and represents the physical part of the model. The voltage drop over the resistor–capacitor circuit, including its dependency on current and state of charge, is implemented as a NODE. After training, the grey-box model shows good agreement with experimental full-cycle data and pulse tests on a lithium iron phosphate cell. We test the model against two dynamic load profiles: one consisting of half cycles and one dynamic load profile representing a home-storage system. The dynamic response of the battery is well captured by the model.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:MDPI AG Authors: Jennifer Brucker; René Behmann; Wolfgang G. Bessler; Rainer Gasper;doi: 10.3390/en15072661
Lithium-ion batteries exhibit a dynamic voltage behaviour depending nonlinearly on current and state of charge. The modelling of lithium-ion batteries is therefore complicated and model parametrisation is often time demanding. Grey-box models combine physical and data-driven modelling to benefit from their respective advantages. Neural ordinary differential equations (NODEs) offer new possibilities for grey-box modelling. Differential equations given by physical laws and NODEs can be combined in a single modelling framework. Here we demonstrate the use of NODEs for grey-box modelling of lithium-ion batteries. A simple equivalent circuit model serves as a basis and represents the physical part of the model. The voltage drop over the resistor–capacitor circuit, including its dependency on current and state of charge, is implemented as a NODE. After training, the grey-box model shows good agreement with experimental full-cycle data and pulse tests on a lithium iron phosphate cell. We test the model against two dynamic load profiles: one consisting of half cycles and one dynamic load profile representing a home-storage system. The dynamic response of the battery is well captured by the model.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Sung-Moon Choi; Byeong-Gill Han; Mi-Young Kim; Dae-Seok Rho;doi: 10.3390/en15093257
Installations of an Energy Storage System (ESS) with various functions such as power stabilization of renewable energy, demand management, and frequency adjustment are increasing. In particular, ESS for demand management is being established for high-voltage customers (300 KVA–1000 KVA) who have placed an Auto Section Switch (ASS) at the connection point within the distribution system. However, a power outage may occur in the Power Receiving System (PRS) when a short-circuit fault due to insulation breakdown occurs at the ESS DC side. The reason for this breakdown is that the fault current is reduced by transformer impedance, and the ASS is opened before the DC power fuse. Therefore, using the Graphic Solution Method (GSM), this paper presents an operation algorithm for protection coordination that isolates the fault section by first operating the DC power fuse with a small fault current. Furthermore, fault analysis modeling for a PRS composed of a switchgear section, a main distribution panel, a Power Conditioning System (PCS), a power fuse, and a battery is performed through PSCAD/EMTDC. From the simulation results, it is confirmed that the fault section is quickly isolated, and power outages for high-voltage customers are prevented because the DC power fuse selected by the proposed operation algorithm of protection coordination is opened before the ASS.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/9/3257/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15093257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/9/3257/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15093257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Sung-Moon Choi; Byeong-Gill Han; Mi-Young Kim; Dae-Seok Rho;doi: 10.3390/en15093257
Installations of an Energy Storage System (ESS) with various functions such as power stabilization of renewable energy, demand management, and frequency adjustment are increasing. In particular, ESS for demand management is being established for high-voltage customers (300 KVA–1000 KVA) who have placed an Auto Section Switch (ASS) at the connection point within the distribution system. However, a power outage may occur in the Power Receiving System (PRS) when a short-circuit fault due to insulation breakdown occurs at the ESS DC side. The reason for this breakdown is that the fault current is reduced by transformer impedance, and the ASS is opened before the DC power fuse. Therefore, using the Graphic Solution Method (GSM), this paper presents an operation algorithm for protection coordination that isolates the fault section by first operating the DC power fuse with a small fault current. Furthermore, fault analysis modeling for a PRS composed of a switchgear section, a main distribution panel, a Power Conditioning System (PCS), a power fuse, and a battery is performed through PSCAD/EMTDC. From the simulation results, it is confirmed that the fault section is quickly isolated, and power outages for high-voltage customers are prevented because the DC power fuse selected by the proposed operation algorithm of protection coordination is opened before the ASS.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/9/3257/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15093257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/9/3257/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15093257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Alexander Begemann; Theresa Trummler; Alexander Doehring; Michael Pfitzner; Markus Klein;doi: 10.3390/en16052113
Mixing under high pressure conditions plays a central role in several engineering applications, such as direct-injection engines and liquid rocket engines. Numerical flow simulations have become a complementary tool to study the mixing process under these conditions but require complex thermodynamic modeling as well as validation with accurate experimental data. For this reason, we use experiments of supercritical single-phase jet mixing from the literature, where the mixing is quantified by the mixture speed of sound, as a reference for our work. We here focus on the thermodynamic modeling of multi-component flows under high pressure conditions and the analytical calculation of the mixture speed of sound. Our thermodynamic model is based on cubic equations of state extended for multi-components. Using an extension of OpenFOAM, we perform large-eddy simulations of hexane and pentane injections and compare our results with the experimentally measured mixture speed of sound at specific positions. The simulation results show the same characteristic trends, indicating that the mixing effects are well reproduced in the simulations. Additionally, the effect of the sub-grid scale modeling is assessed by comparing results using different models (Smagorinsky, Vreman, and Wall-Adapting Local Eddy-viscosity). The comprehensive simulation data presented here, in combination with the experimental data, provide a benchmark for numerical simulations of jet mixing in high pressure conditions.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2113/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2113/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Alexander Begemann; Theresa Trummler; Alexander Doehring; Michael Pfitzner; Markus Klein;doi: 10.3390/en16052113
Mixing under high pressure conditions plays a central role in several engineering applications, such as direct-injection engines and liquid rocket engines. Numerical flow simulations have become a complementary tool to study the mixing process under these conditions but require complex thermodynamic modeling as well as validation with accurate experimental data. For this reason, we use experiments of supercritical single-phase jet mixing from the literature, where the mixing is quantified by the mixture speed of sound, as a reference for our work. We here focus on the thermodynamic modeling of multi-component flows under high pressure conditions and the analytical calculation of the mixture speed of sound. Our thermodynamic model is based on cubic equations of state extended for multi-components. Using an extension of OpenFOAM, we perform large-eddy simulations of hexane and pentane injections and compare our results with the experimentally measured mixture speed of sound at specific positions. The simulation results show the same characteristic trends, indicating that the mixing effects are well reproduced in the simulations. Additionally, the effect of the sub-grid scale modeling is assessed by comparing results using different models (Smagorinsky, Vreman, and Wall-Adapting Local Eddy-viscosity). The comprehensive simulation data presented here, in combination with the experimental data, provide a benchmark for numerical simulations of jet mixing in high pressure conditions.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2113/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2113/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Sara Anttila; Jéssica S. Döhler; Janaína G. Oliveira; Cecilia Boström;doi: 10.3390/en15155517
In the past decade, inverter-integrated energy sources have experienced rapid growth, which leads to operating challenges associated with reduced system inertia and intermittent power generation, which can cause instability and performance issues of the power system. Improved control schemes for inverters are necessary to ensure the stability and resilience of the power system. Grid-forming inverters dampen frequency fluctuations in the power system, while grid-following inverters can aggravate frequency problems with increased penetration. This paper aims at reviewing the role of grid-forming inverters in the power system, including their topology, control strategies, challenges, sizing, and location. In order to facilitate continued research in this field, a comprehensive literature review and classification of the studies are conducted, followed by research gaps and suggestions for future studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 61 citations 61 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Sara Anttila; Jéssica S. Döhler; Janaína G. Oliveira; Cecilia Boström;doi: 10.3390/en15155517
In the past decade, inverter-integrated energy sources have experienced rapid growth, which leads to operating challenges associated with reduced system inertia and intermittent power generation, which can cause instability and performance issues of the power system. Improved control schemes for inverters are necessary to ensure the stability and resilience of the power system. Grid-forming inverters dampen frequency fluctuations in the power system, while grid-following inverters can aggravate frequency problems with increased penetration. This paper aims at reviewing the role of grid-forming inverters in the power system, including their topology, control strategies, challenges, sizing, and location. In order to facilitate continued research in this field, a comprehensive literature review and classification of the studies are conducted, followed by research gaps and suggestions for future studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 61 citations 61 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Hao Zhou; Qiaoling He; Yichuan Li; Yangjun Wang; Dongsheng Wang; Yongliang Xie;doi: 10.3390/en17174397
Accurate estimation of State-of-Charge (SoC) is essential for ensuring the safe and efficient operation of electric vehicles (EVs). Currently, second-order RC equivalent circuit models do not account for the influence of battery charging and discharging states on battery parameters. Additionally, offline parameter identification becomes inaccurate as the battery ages. Online identification requires real-time parameter updates during the SoC estimation process, which increases the computational complexity and reduces the computational efficiency of real vehicle Battery Management System (BMS) chips. To address these issues, this paper proposes a SoC estimation method that combines online and offline identification based on an optimized second-order RC equivalent circuit model, which distinguishes it from existing methods in the field. On the basis of the traditional second-order RC model, the Ohmic resistance (R0), polarization resistance (R1), polarization capacitance (C1), diffusion resistance (R2), and diffusion capacitance (C2) during the charging and discharging processes are discussed separately. R0, which does not change frequently, is identified offline, while R1, R2, C1, and C2, which dynamically change with time and current, are identified online. To thoroughly verify the feasibility of the proposed method, we construct an SoC estimation test bench, which allows us to adjust the battery’s surface temperature in real time using a temperature control chamber. Experimental validation under Federal Urban Driving Schedule (FUDS) (−10 °C to 45 °C, 80% battery capacity) and Dynamic Stress Test (DST) (−10 °C to 45 °C, 8% battery capacity) conditions demonstrate that our method improves SoC estimation accuracy by 16.28% under FUDS and 28.2% under DST compared to the improved GRU-based transfer learning method, while maintaining system SoC estimation efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Hao Zhou; Qiaoling He; Yichuan Li; Yangjun Wang; Dongsheng Wang; Yongliang Xie;doi: 10.3390/en17174397
Accurate estimation of State-of-Charge (SoC) is essential for ensuring the safe and efficient operation of electric vehicles (EVs). Currently, second-order RC equivalent circuit models do not account for the influence of battery charging and discharging states on battery parameters. Additionally, offline parameter identification becomes inaccurate as the battery ages. Online identification requires real-time parameter updates during the SoC estimation process, which increases the computational complexity and reduces the computational efficiency of real vehicle Battery Management System (BMS) chips. To address these issues, this paper proposes a SoC estimation method that combines online and offline identification based on an optimized second-order RC equivalent circuit model, which distinguishes it from existing methods in the field. On the basis of the traditional second-order RC model, the Ohmic resistance (R0), polarization resistance (R1), polarization capacitance (C1), diffusion resistance (R2), and diffusion capacitance (C2) during the charging and discharging processes are discussed separately. R0, which does not change frequently, is identified offline, while R1, R2, C1, and C2, which dynamically change with time and current, are identified online. To thoroughly verify the feasibility of the proposed method, we construct an SoC estimation test bench, which allows us to adjust the battery’s surface temperature in real time using a temperature control chamber. Experimental validation under Federal Urban Driving Schedule (FUDS) (−10 °C to 45 °C, 80% battery capacity) and Dynamic Stress Test (DST) (−10 °C to 45 °C, 8% battery capacity) conditions demonstrate that our method improves SoC estimation accuracy by 16.28% under FUDS and 28.2% under DST compared to the improved GRU-based transfer learning method, while maintaining system SoC estimation efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Luo, Yanting; Yang, Yongmin; Wen, Xisen; Cheng, Ming;doi: 10.3390/en11082032
Uncertainty commonly exists in the wireless power transfer (WPT) systems for moving objects. To enhance the robustness of the WPT system to uncertain parameter variations, a modified WPT system structure and an interval-based uncertain optimization method are proposed in this paper. The modified WPT system, which includes two Q-type impedance matching networks, can switch between two different operating modes. The interval-based uncertain optimization method is used to improve the robustness of the modified WPT system: First, two interval-based objective functions (mean function and variance function) are defined to evaluate the average performance and the robustness of the system. A double-objective uncertain optimization model for the modified WPT system is built. Second, a bi-level nested optimization algorithm is proposed to find the Pareto optimal solutions of the proposed optimization model. The Pareto fronts are provided to illustrate the tradeoff between the two objectives, and the robust solutions are obtained. Experiments were carried out to verify the theoretical method. The results demonstrated that using the proposed method, the modified WPT system can achieve good robustness when the coupling coefficient, the operating frequency, the load resistance or the load reactance varies over a wide range.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/8/2032/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11082032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/8/2032/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11082032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Luo, Yanting; Yang, Yongmin; Wen, Xisen; Cheng, Ming;doi: 10.3390/en11082032
Uncertainty commonly exists in the wireless power transfer (WPT) systems for moving objects. To enhance the robustness of the WPT system to uncertain parameter variations, a modified WPT system structure and an interval-based uncertain optimization method are proposed in this paper. The modified WPT system, which includes two Q-type impedance matching networks, can switch between two different operating modes. The interval-based uncertain optimization method is used to improve the robustness of the modified WPT system: First, two interval-based objective functions (mean function and variance function) are defined to evaluate the average performance and the robustness of the system. A double-objective uncertain optimization model for the modified WPT system is built. Second, a bi-level nested optimization algorithm is proposed to find the Pareto optimal solutions of the proposed optimization model. The Pareto fronts are provided to illustrate the tradeoff between the two objectives, and the robust solutions are obtained. Experiments were carried out to verify the theoretical method. The results demonstrated that using the proposed method, the modified WPT system can achieve good robustness when the coupling coefficient, the operating frequency, the load resistance or the load reactance varies over a wide range.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/8/2032/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11082032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/8/2032/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11082032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2020Embargo end date: 01 Jan 2020 United KingdomPublisher:MDPI AG Authors: Ekaterina Abramova; Derek Bunn;Intra-day price spreads are of interest to electricity traders, storage and electric vehicle operators. This paper formulates dynamic density functions, based upon skewed-t and similar representations, to model and forecast the German electricity price spreads between different hours of the day, as revealed in the day-ahead auctions. The four specifications of the density functions are dynamic and conditional upon exogenous drivers, thereby permitting the location, scale and shape parameters of the densities to respond hourly to such factors as weather and demand forecasts. The best fitting and forecasting specifications for each spread are selected based on the Pinball Loss function, following the closed-form analytical solutions of the cumulative distribution functions.
CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/3/687/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/3/687/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2020Embargo end date: 01 Jan 2020 United KingdomPublisher:MDPI AG Authors: Ekaterina Abramova; Derek Bunn;Intra-day price spreads are of interest to electricity traders, storage and electric vehicle operators. This paper formulates dynamic density functions, based upon skewed-t and similar representations, to model and forecast the German electricity price spreads between different hours of the day, as revealed in the day-ahead auctions. The four specifications of the density functions are dynamic and conditional upon exogenous drivers, thereby permitting the location, scale and shape parameters of the densities to respond hourly to such factors as weather and demand forecasts. The best fitting and forecasting specifications for each spread are selected based on the Pinball Loss function, following the closed-form analytical solutions of the cumulative distribution functions.
CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/3/687/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/3/687/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 DenmarkPublisher:MDPI AG Authors: Charlotte Rennuit; Sven Gjedde Sommer;doi: 10.3390/en6105314
Biogas production is a clean renewable energy source that can improve lives in developing countries. However, winter temperatures in some areas are too low to enable enough biogas production in small unheated digesters to meet the energy requirements of households. Low-cost, high yield reactors adapted to the local climate are needed in those situations. A decision-support model was developed to assist in the design of biogas reactors capable of meeting households’ year-round energy needs. Monthly biogas production relative to household energy needs was calculated for the scenario of suburban Hanoi, Vietnam. Calculations included pig number, slurry (manure water mixture) dilution, retention time and biogas/solar heating. Although using biogas to heat the digester increased biogas production, it did not lead to an energy surplus, particularly with the 1:9 slurry dilution rate commonly used on pig farms. However, at a 1:3 slurry dilution, the use of solar heating to provide 90% and biogas 10% of the heat required to heat the digester to 35 °C improved the biogas production by 50% compared to psychrophilic production. The energy needs of an average five-person family throughout the year required 17 fattening pigs. This model can establish the best solution for producing sufficient energy throughout the year.
Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/10/5314/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Denmark Research OutputArticle . 2013Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6105314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/10/5314/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Denmark Research OutputArticle . 2013Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6105314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 DenmarkPublisher:MDPI AG Authors: Charlotte Rennuit; Sven Gjedde Sommer;doi: 10.3390/en6105314
Biogas production is a clean renewable energy source that can improve lives in developing countries. However, winter temperatures in some areas are too low to enable enough biogas production in small unheated digesters to meet the energy requirements of households. Low-cost, high yield reactors adapted to the local climate are needed in those situations. A decision-support model was developed to assist in the design of biogas reactors capable of meeting households’ year-round energy needs. Monthly biogas production relative to household energy needs was calculated for the scenario of suburban Hanoi, Vietnam. Calculations included pig number, slurry (manure water mixture) dilution, retention time and biogas/solar heating. Although using biogas to heat the digester increased biogas production, it did not lead to an energy surplus, particularly with the 1:9 slurry dilution rate commonly used on pig farms. However, at a 1:3 slurry dilution, the use of solar heating to provide 90% and biogas 10% of the heat required to heat the digester to 35 °C improved the biogas production by 50% compared to psychrophilic production. The energy needs of an average five-person family throughout the year required 17 fattening pigs. This model can establish the best solution for producing sufficient energy throughout the year.
Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/10/5314/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Denmark Research OutputArticle . 2013Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6105314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/10/5314/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Denmark Research OutputArticle . 2013Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6105314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Jeong-Un Yu; Kyu-Sang Cho; Sung-Won Park; Sung-Yong Son;doi: 10.3390/en17246249
Research on digital twins (DTs) in the power system field has mainly focused on implementing DTs for specific resources, while few studies on electric vehicle (EV)-based DT implementation have considered integration and interoperability between systems. This study introduces a DT-based EV system operation framework to address the aforementioned research gap. The framework implements individual EVs, charging stations, and charging station operators (CPOs) as DTs, enabling integrated operation with the power grid. The DT-based EV agent supports independent decision-making on power service participation by considering location information, distance, charging amount, spare time, and incentives. In addition, the CPO can establish an optimal incentive strategy to induce EV users to participate in grid power services. The proposed DT systems map information between EVs, charging stations, and the grid, enabling analysis and verification of the impact of participants on charging station operation, grid stability, and economic efficiency in an independent environment. The effectiveness and usability of the proposed framework were verified through a case study on an incentive-based demand response program.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Jeong-Un Yu; Kyu-Sang Cho; Sung-Won Park; Sung-Yong Son;doi: 10.3390/en17246249
Research on digital twins (DTs) in the power system field has mainly focused on implementing DTs for specific resources, while few studies on electric vehicle (EV)-based DT implementation have considered integration and interoperability between systems. This study introduces a DT-based EV system operation framework to address the aforementioned research gap. The framework implements individual EVs, charging stations, and charging station operators (CPOs) as DTs, enabling integrated operation with the power grid. The DT-based EV agent supports independent decision-making on power service participation by considering location information, distance, charging amount, spare time, and incentives. In addition, the CPO can establish an optimal incentive strategy to induce EV users to participate in grid power services. The proposed DT systems map information between EVs, charging stations, and the grid, enabling analysis and verification of the impact of participants on charging station operation, grid stability, and economic efficiency in an independent environment. The effectiveness and usability of the proposed framework were verified through a case study on an incentive-based demand response program.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:MDPI AG Authors: Jennifer Brucker; René Behmann; Wolfgang G. Bessler; Rainer Gasper;doi: 10.3390/en15072661
Lithium-ion batteries exhibit a dynamic voltage behaviour depending nonlinearly on current and state of charge. The modelling of lithium-ion batteries is therefore complicated and model parametrisation is often time demanding. Grey-box models combine physical and data-driven modelling to benefit from their respective advantages. Neural ordinary differential equations (NODEs) offer new possibilities for grey-box modelling. Differential equations given by physical laws and NODEs can be combined in a single modelling framework. Here we demonstrate the use of NODEs for grey-box modelling of lithium-ion batteries. A simple equivalent circuit model serves as a basis and represents the physical part of the model. The voltage drop over the resistor–capacitor circuit, including its dependency on current and state of charge, is implemented as a NODE. After training, the grey-box model shows good agreement with experimental full-cycle data and pulse tests on a lithium iron phosphate cell. We test the model against two dynamic load profiles: one consisting of half cycles and one dynamic load profile representing a home-storage system. The dynamic response of the battery is well captured by the model.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:MDPI AG Authors: Jennifer Brucker; René Behmann; Wolfgang G. Bessler; Rainer Gasper;doi: 10.3390/en15072661
Lithium-ion batteries exhibit a dynamic voltage behaviour depending nonlinearly on current and state of charge. The modelling of lithium-ion batteries is therefore complicated and model parametrisation is often time demanding. Grey-box models combine physical and data-driven modelling to benefit from their respective advantages. Neural ordinary differential equations (NODEs) offer new possibilities for grey-box modelling. Differential equations given by physical laws and NODEs can be combined in a single modelling framework. Here we demonstrate the use of NODEs for grey-box modelling of lithium-ion batteries. A simple equivalent circuit model serves as a basis and represents the physical part of the model. The voltage drop over the resistor–capacitor circuit, including its dependency on current and state of charge, is implemented as a NODE. After training, the grey-box model shows good agreement with experimental full-cycle data and pulse tests on a lithium iron phosphate cell. We test the model against two dynamic load profiles: one consisting of half cycles and one dynamic load profile representing a home-storage system. The dynamic response of the battery is well captured by the model.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Sung-Moon Choi; Byeong-Gill Han; Mi-Young Kim; Dae-Seok Rho;doi: 10.3390/en15093257
Installations of an Energy Storage System (ESS) with various functions such as power stabilization of renewable energy, demand management, and frequency adjustment are increasing. In particular, ESS for demand management is being established for high-voltage customers (300 KVA–1000 KVA) who have placed an Auto Section Switch (ASS) at the connection point within the distribution system. However, a power outage may occur in the Power Receiving System (PRS) when a short-circuit fault due to insulation breakdown occurs at the ESS DC side. The reason for this breakdown is that the fault current is reduced by transformer impedance, and the ASS is opened before the DC power fuse. Therefore, using the Graphic Solution Method (GSM), this paper presents an operation algorithm for protection coordination that isolates the fault section by first operating the DC power fuse with a small fault current. Furthermore, fault analysis modeling for a PRS composed of a switchgear section, a main distribution panel, a Power Conditioning System (PCS), a power fuse, and a battery is performed through PSCAD/EMTDC. From the simulation results, it is confirmed that the fault section is quickly isolated, and power outages for high-voltage customers are prevented because the DC power fuse selected by the proposed operation algorithm of protection coordination is opened before the ASS.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/9/3257/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15093257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/9/3257/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15093257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Sung-Moon Choi; Byeong-Gill Han; Mi-Young Kim; Dae-Seok Rho;doi: 10.3390/en15093257
Installations of an Energy Storage System (ESS) with various functions such as power stabilization of renewable energy, demand management, and frequency adjustment are increasing. In particular, ESS for demand management is being established for high-voltage customers (300 KVA–1000 KVA) who have placed an Auto Section Switch (ASS) at the connection point within the distribution system. However, a power outage may occur in the Power Receiving System (PRS) when a short-circuit fault due to insulation breakdown occurs at the ESS DC side. The reason for this breakdown is that the fault current is reduced by transformer impedance, and the ASS is opened before the DC power fuse. Therefore, using the Graphic Solution Method (GSM), this paper presents an operation algorithm for protection coordination that isolates the fault section by first operating the DC power fuse with a small fault current. Furthermore, fault analysis modeling for a PRS composed of a switchgear section, a main distribution panel, a Power Conditioning System (PCS), a power fuse, and a battery is performed through PSCAD/EMTDC. From the simulation results, it is confirmed that the fault section is quickly isolated, and power outages for high-voltage customers are prevented because the DC power fuse selected by the proposed operation algorithm of protection coordination is opened before the ASS.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/9/3257/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15093257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/9/3257/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15093257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Alexander Begemann; Theresa Trummler; Alexander Doehring; Michael Pfitzner; Markus Klein;doi: 10.3390/en16052113
Mixing under high pressure conditions plays a central role in several engineering applications, such as direct-injection engines and liquid rocket engines. Numerical flow simulations have become a complementary tool to study the mixing process under these conditions but require complex thermodynamic modeling as well as validation with accurate experimental data. For this reason, we use experiments of supercritical single-phase jet mixing from the literature, where the mixing is quantified by the mixture speed of sound, as a reference for our work. We here focus on the thermodynamic modeling of multi-component flows under high pressure conditions and the analytical calculation of the mixture speed of sound. Our thermodynamic model is based on cubic equations of state extended for multi-components. Using an extension of OpenFOAM, we perform large-eddy simulations of hexane and pentane injections and compare our results with the experimentally measured mixture speed of sound at specific positions. The simulation results show the same characteristic trends, indicating that the mixing effects are well reproduced in the simulations. Additionally, the effect of the sub-grid scale modeling is assessed by comparing results using different models (Smagorinsky, Vreman, and Wall-Adapting Local Eddy-viscosity). The comprehensive simulation data presented here, in combination with the experimental data, provide a benchmark for numerical simulations of jet mixing in high pressure conditions.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2113/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2113/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Alexander Begemann; Theresa Trummler; Alexander Doehring; Michael Pfitzner; Markus Klein;doi: 10.3390/en16052113
Mixing under high pressure conditions plays a central role in several engineering applications, such as direct-injection engines and liquid rocket engines. Numerical flow simulations have become a complementary tool to study the mixing process under these conditions but require complex thermodynamic modeling as well as validation with accurate experimental data. For this reason, we use experiments of supercritical single-phase jet mixing from the literature, where the mixing is quantified by the mixture speed of sound, as a reference for our work. We here focus on the thermodynamic modeling of multi-component flows under high pressure conditions and the analytical calculation of the mixture speed of sound. Our thermodynamic model is based on cubic equations of state extended for multi-components. Using an extension of OpenFOAM, we perform large-eddy simulations of hexane and pentane injections and compare our results with the experimentally measured mixture speed of sound at specific positions. The simulation results show the same characteristic trends, indicating that the mixing effects are well reproduced in the simulations. Additionally, the effect of the sub-grid scale modeling is assessed by comparing results using different models (Smagorinsky, Vreman, and Wall-Adapting Local Eddy-viscosity). The comprehensive simulation data presented here, in combination with the experimental data, provide a benchmark for numerical simulations of jet mixing in high pressure conditions.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2113/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2113/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Sara Anttila; Jéssica S. Döhler; Janaína G. Oliveira; Cecilia Boström;doi: 10.3390/en15155517
In the past decade, inverter-integrated energy sources have experienced rapid growth, which leads to operating challenges associated with reduced system inertia and intermittent power generation, which can cause instability and performance issues of the power system. Improved control schemes for inverters are necessary to ensure the stability and resilience of the power system. Grid-forming inverters dampen frequency fluctuations in the power system, while grid-following inverters can aggravate frequency problems with increased penetration. This paper aims at reviewing the role of grid-forming inverters in the power system, including their topology, control strategies, challenges, sizing, and location. In order to facilitate continued research in this field, a comprehensive literature review and classification of the studies are conducted, followed by research gaps and suggestions for future studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 61 citations 61 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Sara Anttila; Jéssica S. Döhler; Janaína G. Oliveira; Cecilia Boström;doi: 10.3390/en15155517
In the past decade, inverter-integrated energy sources have experienced rapid growth, which leads to operating challenges associated with reduced system inertia and intermittent power generation, which can cause instability and performance issues of the power system. Improved control schemes for inverters are necessary to ensure the stability and resilience of the power system. Grid-forming inverters dampen frequency fluctuations in the power system, while grid-following inverters can aggravate frequency problems with increased penetration. This paper aims at reviewing the role of grid-forming inverters in the power system, including their topology, control strategies, challenges, sizing, and location. In order to facilitate continued research in this field, a comprehensive literature review and classification of the studies are conducted, followed by research gaps and suggestions for future studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 61 citations 61 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Hao Zhou; Qiaoling He; Yichuan Li; Yangjun Wang; Dongsheng Wang; Yongliang Xie;doi: 10.3390/en17174397
Accurate estimation of State-of-Charge (SoC) is essential for ensuring the safe and efficient operation of electric vehicles (EVs). Currently, second-order RC equivalent circuit models do not account for the influence of battery charging and discharging states on battery parameters. Additionally, offline parameter identification becomes inaccurate as the battery ages. Online identification requires real-time parameter updates during the SoC estimation process, which increases the computational complexity and reduces the computational efficiency of real vehicle Battery Management System (BMS) chips. To address these issues, this paper proposes a SoC estimation method that combines online and offline identification based on an optimized second-order RC equivalent circuit model, which distinguishes it from existing methods in the field. On the basis of the traditional second-order RC model, the Ohmic resistance (R0), polarization resistance (R1), polarization capacitance (C1), diffusion resistance (R2), and diffusion capacitance (C2) during the charging and discharging processes are discussed separately. R0, which does not change frequently, is identified offline, while R1, R2, C1, and C2, which dynamically change with time and current, are identified online. To thoroughly verify the feasibility of the proposed method, we construct an SoC estimation test bench, which allows us to adjust the battery’s surface temperature in real time using a temperature control chamber. Experimental validation under Federal Urban Driving Schedule (FUDS) (−10 °C to 45 °C, 80% battery capacity) and Dynamic Stress Test (DST) (−10 °C to 45 °C, 8% battery capacity) conditions demonstrate that our method improves SoC estimation accuracy by 16.28% under FUDS and 28.2% under DST compared to the improved GRU-based transfer learning method, while maintaining system SoC estimation efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Hao Zhou; Qiaoling He; Yichuan Li; Yangjun Wang; Dongsheng Wang; Yongliang Xie;doi: 10.3390/en17174397
Accurate estimation of State-of-Charge (SoC) is essential for ensuring the safe and efficient operation of electric vehicles (EVs). Currently, second-order RC equivalent circuit models do not account for the influence of battery charging and discharging states on battery parameters. Additionally, offline parameter identification becomes inaccurate as the battery ages. Online identification requires real-time parameter updates during the SoC estimation process, which increases the computational complexity and reduces the computational efficiency of real vehicle Battery Management System (BMS) chips. To address these issues, this paper proposes a SoC estimation method that combines online and offline identification based on an optimized second-order RC equivalent circuit model, which distinguishes it from existing methods in the field. On the basis of the traditional second-order RC model, the Ohmic resistance (R0), polarization resistance (R1), polarization capacitance (C1), diffusion resistance (R2), and diffusion capacitance (C2) during the charging and discharging processes are discussed separately. R0, which does not change frequently, is identified offline, while R1, R2, C1, and C2, which dynamically change with time and current, are identified online. To thoroughly verify the feasibility of the proposed method, we construct an SoC estimation test bench, which allows us to adjust the battery’s surface temperature in real time using a temperature control chamber. Experimental validation under Federal Urban Driving Schedule (FUDS) (−10 °C to 45 °C, 80% battery capacity) and Dynamic Stress Test (DST) (−10 °C to 45 °C, 8% battery capacity) conditions demonstrate that our method improves SoC estimation accuracy by 16.28% under FUDS and 28.2% under DST compared to the improved GRU-based transfer learning method, while maintaining system SoC estimation efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Luo, Yanting; Yang, Yongmin; Wen, Xisen; Cheng, Ming;doi: 10.3390/en11082032
Uncertainty commonly exists in the wireless power transfer (WPT) systems for moving objects. To enhance the robustness of the WPT system to uncertain parameter variations, a modified WPT system structure and an interval-based uncertain optimization method are proposed in this paper. The modified WPT system, which includes two Q-type impedance matching networks, can switch between two different operating modes. The interval-based uncertain optimization method is used to improve the robustness of the modified WPT system: First, two interval-based objective functions (mean function and variance function) are defined to evaluate the average performance and the robustness of the system. A double-objective uncertain optimization model for the modified WPT system is built. Second, a bi-level nested optimization algorithm is proposed to find the Pareto optimal solutions of the proposed optimization model. The Pareto fronts are provided to illustrate the tradeoff between the two objectives, and the robust solutions are obtained. Experiments were carried out to verify the theoretical method. The results demonstrated that using the proposed method, the modified WPT system can achieve good robustness when the coupling coefficient, the operating frequency, the load resistance or the load reactance varies over a wide range.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/8/2032/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11082032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/8/2032/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11082032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Luo, Yanting; Yang, Yongmin; Wen, Xisen; Cheng, Ming;doi: 10.3390/en11082032
Uncertainty commonly exists in the wireless power transfer (WPT) systems for moving objects. To enhance the robustness of the WPT system to uncertain parameter variations, a modified WPT system structure and an interval-based uncertain optimization method are proposed in this paper. The modified WPT system, which includes two Q-type impedance matching networks, can switch between two different operating modes. The interval-based uncertain optimization method is used to improve the robustness of the modified WPT system: First, two interval-based objective functions (mean function and variance function) are defined to evaluate the average performance and the robustness of the system. A double-objective uncertain optimization model for the modified WPT system is built. Second, a bi-level nested optimization algorithm is proposed to find the Pareto optimal solutions of the proposed optimization model. The Pareto fronts are provided to illustrate the tradeoff between the two objectives, and the robust solutions are obtained. Experiments were carried out to verify the theoretical method. The results demonstrated that using the proposed method, the modified WPT system can achieve good robustness when the coupling coefficient, the operating frequency, the load resistance or the load reactance varies over a wide range.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/8/2032/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11082032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/8/2032/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11082032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2020Embargo end date: 01 Jan 2020 United KingdomPublisher:MDPI AG Authors: Ekaterina Abramova; Derek Bunn;Intra-day price spreads are of interest to electricity traders, storage and electric vehicle operators. This paper formulates dynamic density functions, based upon skewed-t and similar representations, to model and forecast the German electricity price spreads between different hours of the day, as revealed in the day-ahead auctions. The four specifications of the density functions are dynamic and conditional upon exogenous drivers, thereby permitting the location, scale and shape parameters of the densities to respond hourly to such factors as weather and demand forecasts. The best fitting and forecasting specifications for each spread are selected based on the Pinball Loss function, following the closed-form analytical solutions of the cumulative distribution functions.
CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/3/687/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/3/687/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2020Embargo end date: 01 Jan 2020 United KingdomPublisher:MDPI AG Authors: Ekaterina Abramova; Derek Bunn;Intra-day price spreads are of interest to electricity traders, storage and electric vehicle operators. This paper formulates dynamic density functions, based upon skewed-t and similar representations, to model and forecast the German electricity price spreads between different hours of the day, as revealed in the day-ahead auctions. The four specifications of the density functions are dynamic and conditional upon exogenous drivers, thereby permitting the location, scale and shape parameters of the densities to respond hourly to such factors as weather and demand forecasts. The best fitting and forecasting specifications for each spread are selected based on the Pinball Loss function, following the closed-form analytical solutions of the cumulative distribution functions.
CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/3/687/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/3/687/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 DenmarkPublisher:MDPI AG Authors: Charlotte Rennuit; Sven Gjedde Sommer;doi: 10.3390/en6105314
Biogas production is a clean renewable energy source that can improve lives in developing countries. However, winter temperatures in some areas are too low to enable enough biogas production in small unheated digesters to meet the energy requirements of households. Low-cost, high yield reactors adapted to the local climate are needed in those situations. A decision-support model was developed to assist in the design of biogas reactors capable of meeting households’ year-round energy needs. Monthly biogas production relative to household energy needs was calculated for the scenario of suburban Hanoi, Vietnam. Calculations included pig number, slurry (manure water mixture) dilution, retention time and biogas/solar heating. Although using biogas to heat the digester increased biogas production, it did not lead to an energy surplus, particularly with the 1:9 slurry dilution rate commonly used on pig farms. However, at a 1:3 slurry dilution, the use of solar heating to provide 90% and biogas 10% of the heat required to heat the digester to 35 °C improved the biogas production by 50% compared to psychrophilic production. The energy needs of an average five-person family throughout the year required 17 fattening pigs. This model can establish the best solution for producing sufficient energy throughout the year.
Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/10/5314/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Denmark Research OutputArticle . 2013Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6105314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/10/5314/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Denmark Research OutputArticle . 2013Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6105314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 DenmarkPublisher:MDPI AG Authors: Charlotte Rennuit; Sven Gjedde Sommer;doi: 10.3390/en6105314
Biogas production is a clean renewable energy source that can improve lives in developing countries. However, winter temperatures in some areas are too low to enable enough biogas production in small unheated digesters to meet the energy requirements of households. Low-cost, high yield reactors adapted to the local climate are needed in those situations. A decision-support model was developed to assist in the design of biogas reactors capable of meeting households’ year-round energy needs. Monthly biogas production relative to household energy needs was calculated for the scenario of suburban Hanoi, Vietnam. Calculations included pig number, slurry (manure water mixture) dilution, retention time and biogas/solar heating. Although using biogas to heat the digester increased biogas production, it did not lead to an energy surplus, particularly with the 1:9 slurry dilution rate commonly used on pig farms. However, at a 1:3 slurry dilution, the use of solar heating to provide 90% and biogas 10% of the heat required to heat the digester to 35 °C improved the biogas production by 50% compared to psychrophilic production. The energy needs of an average five-person family throughout the year required 17 fattening pigs. This model can establish the best solution for producing sufficient energy throughout the year.
Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/10/5314/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Denmark Research OutputArticle . 2013Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6105314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/1996-1073/6/10/5314/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Southern Denmark Research OutputArticle . 2013Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6105314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu