- home
- Advanced Search
- Energy Research
- Open Source
- Embargo
- 11. Sustainability
- 10. No inequality
- Energy Research
- Open Source
- Embargo
- 11. Sustainability
- 10. No inequality
description Publicationkeyboard_double_arrow_right Thesis 2023 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Gomezgil Yaspik, Vianney;doi: 10.17863/cam.102122
In recent decades, many societal changes have unfolded, including population ageing, reconfigurations of household structures, labour market transformation, and a secular deceleration of economic growth. These shifts pose considerable challenges to preexisting welfare states, particularly to the efficacy of countries’ pension systems. This dissertation examines the context and trajectory of pension reforms in Mexico, the United Kingdom, and the United States. Its contribution is to ascertain the viability and political feasibility of reforms that enhance the financial sustainability of their pension systems, while maintaining adequate income and coverage levels. The dissertation builds on political economy approaches and on the institutionalist literature, which highlight how the role of interest groups and structure of institutions and political systems shape policy outcomes. The frameworks of blame avoidance and credit-claiming are also considered, to provide a comprehensive analysis of the complex dynamics surrounding pension systems and reform efforts. This dissertation uses a mixed-methods approach – including public opinion surveys of 3,000+ individuals, semi-structured elite interviews, historical document analyses, and specialized fiscal and actuarial projections of selected pension reforms in the three selected countries. It addresses three core research questions: 1) What is the current context for pension reform in Mexico, the United Kingdom, and the United States given their histories? 2) Is the necessary (for achieving specific minimum levels of sustainability, adequacy, and coverage) pension reform politically feasible? 3) How do the characteristics of each reform affect its political feasibility? Corollary: The modification of which channel (benefits, contributions, retirement age) is perceived as more politically feasible for diverse stakeholders? The methodology chosen provides a timely picture of the context surrounding potential pension reforms in the three case studies. In Mexico, credit-claiming and the interests of private stakeholders explain the success of recent pension reforms, and partisan politics are the key determinants for future fiscal changes. For the United Kingdom, the institutionalist literature helps explain the reasons for the relatively easier reform avenues; the most politically feasible reforms are those in the private sector, while the housing market is of key importance for pensions. In the United States, the institutionalist literature and the framework of blame avoidance also help explain the current legislative gridlock and the reasons why no major reform has been enacted for decades. For Mexico and the United Kingdom there exist politically feasible reforms, notably a modification of the retirement age channel, that can increase the system’s sustainability while maintaining income adequacy and coverage; whereas based on the current context of extreme polarisation and legislative gridlock, there do not seem to exist politically feasible pension reforms that preserve the structure of Social Security in the United States. The dissertation brings the lens of political feasibility to bear on a previously technical literature on the structure of the pension systems in the three countries, and thus on the feasibility of reform to deliver financial sustainability, adequacy of retirement incomes, and adequate coverage of the old age population. It identifies the feasible routes for reform in Mexico and the United Kingdom, but concludes that the political economy context the United States has reached rules out feasible reforms of its current pension structures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.102122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.102122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Authors: Erten, Duygu; Kılkış, Birol;handle: 20.500.12511/8719
According to the second law of thermodynamics, all human activities cause exergy destructions, adding to additional root causes for carbon dioxide emissions responsibility. It means that current carbon dioxide concentrations are accurately observed, but the root causes and their potential solutions against global warming fall short of achieving the goals of the Paris agreement by almost 45% in terms of decarbonization efforts, as shown in this paper. This result applies to all activities, including the green facility concept. In this respect, the primary aim of this paper is to raise awareness about the essence of the Second Law of Thermodynamics in expanding the green facility concept to reach more effective and sustainable rating methodologies concerning the climate crisis. A new evaluating and rating model with a set of exergy-based green building metrics that relate additional carbon dioxide emissions to irreversible exergy destructions has been developed. Examples about apparently green buildings according to the First Law of Thermodynamics are given by showing that these buildings are not green due to additional carbon dioxide emissions responsibility due to exergy destructions. An airport terminal building case is elaborated. It has been shown that although part of the electricity comes from a third-party wind energy provider, it ends up with carbon dioxide emissions responsibility because it is not entirely used in exergy-rational demand points and compares less favorably with an on-site cogeneration system using natural gas by about 30% more emissions responsibility. The results and derivations of new metrics are discussed, which shed light on adding new criteria to existing green building certification programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Italy, GermanyPublisher:Elsevier BV Stefano Campanari; S. Cerniauskas; S. Cerniauskas; Martin Robinius; Paolo Colbertaldo; Detlef Stolten; Detlef Stolten; T. Grube;handle: 11311/1146016
Abstract As main contributors to greenhouse gas emissions, power and transportation are crucial sectors for energy system decarbonization. Their interaction is expected to increase significantly: plug-in electric vehicles add a new electric load, increasing grid demand and potentially requiring substantial grid upgrade; hydrogen production for fuel cell electric vehicles or for clean fuels synthesis could exploit the projected massive power overgeneration by intermittent and seasonally-dependent renewable sources via Power-to-Hydrogen. This work investigates the infrastructural needs involved with a broad diffusion of clean mobility, adopting a sector integration perspective at the national scale. The analysis combines a multi-node energy system balance simulation and a techno-economic assessment of the infrastructure to deliver energy vectors for mobility. The article explores the long-term case of Italy, considering a massive increase of renewable power generation capacity and investigating different mobility scenarios, where low-emission vehicles account for 50% of the stock. First, the model solves the energy balances, integrating the consumption related to mobility energy vectors and taking into account power grid constraints. Then, an optimal infrastructure is identified, composed of both a hydrogen delivery network and a widespread installation of charging points. Results show that the infrastructural requirements bring about investment costs in the range of 43–63 G€. Lower specific costs are associated with the exclusive presence of FCEVs, whereas the full reliance on BEVs leads to the most significant costs. Scenarios that combine FCEVs and BEVs lie in between, suggesting that the overall power + mobility system benefits from the presence of both drivetrain options.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2023Embargo end date: 14 Jul 2023 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Bhattacharjee, Subhajit;doi: 10.17863/cam.99818
The aggravating global problems of energy crisis, rising atmospheric greenhouse gas concentrations and accumulation of persistent waste have attracted the attention of scientists, policy-makers and global organisations to come up with effective and expeditious solutions to address these challenges. In this context, the development of sustainable technologies driven by renewable energy sources for the production of clean fuels and commodity chemicals from diverse waste feedstocks is an appealing approach towards creating a circular economy. Over the years, semiconductor photocatalysts based on TiO₂, CdS, carbon-nitrides (CNx) and carbon dots (CDs) have been widely used for the photocatalytic reforming (PC reforming) of pre-treated waste substrates to organic products, accompanied with clean hydrogen (H₂) generation. However, these conventional solar-driven processes suffer from major drawbacks such as low production rates, poor product selectivity, CO₂ release, challenging process and catalyst optimisation, and harsh waste pre-treatment conditions, which limit their commercial applicability. These challenges are tackled in this thesis with the introduction of new and efficient photoelectrochemical (PEC) and chemoenzymatic processes for reforming a diverse range of waste feedstocks to sustainable fuels. Solar-driven PEC reforming based on halide perovskite light-absorber is first developed as an attractive alternative to PC reforming. The PEC systems consist of a perovskite|Pt photocathode for clean H₂ production and a Cu-Pd alloy anode for reforming diverse waste streams, including pre-treated cellulosic biomass, polyethylene terephthalate (PET) plastics, and industrial by-product glycerol into industrially-relevant, value-added chemicals (gluconic acid, glycolic acid and glyceric acid) without any externally applied bias or voltage. Additionally, the single light-absorber PEC systems can also convert the airborne waste stream and greenhouse gas CO₂ to diverse products with the simultaneous reforming of PET plastics with no applied voltage. The perovskite-based photocathode enables the integration of different CO₂ reduction catalysts such as a molecular cobalt porphyrin, a Cu-In alloy and formate dehydrogenase enzyme, which produce CO, syngas and formate, respectively. The versatile PEC systems, which can be assembled in either a ‘two-compartment’ or standalone ‘artificial leaf’ configurations achieve 60‒90% oxidation product selectivity (with no over-oxidation) and >100 µmol cm‾² h‾¹ product formation rates, corresponding to 10²‒10⁴ times higher activity than conventional PC reforming systems. In addition to developing PEC platforms, this thesis also explores avenues for circumventing the harsh alkaline pre-treatment strategies (pH >13, 60‒80 ºC) adopted for photoreforming waste substrates. For this purpose, a chemoenzymatic pathway is introduced whereby PET and polycaprolactone plastics were deconstructed using functional enzymes under benign conditions (pH 6‒8, 37‒65 ºC), followed by PC reforming using Pt loaded TiO₂ (TiO₂|Pt) or Ni₂P loaded carbon-nitride (CNx|Ni₂P) photocatalysts. The chemoenzymatic reforming process demonstrates versatility in upcycling polyester films and nanoplastics for H₂ production at high yields reaching ∼10³‒10⁴ µmol gsub‾¹ and activities at >500 µmol gcat‾¹ h‾¹. The utilisation of enzyme pre-treated plastics also allowed the coupling of plastic reforming with photocatalytic CO₂-to-syngas conversion using a phosphonated cobalt bis(terpyridine) co-catalyst immobilised on TiO₂ (TiO₂|CotpyP). Finally, moving beyond solar-driven systems, a bio-electrocatalytic flow process is demonstrated for the conversion of microbe pre-treated food waste to ethylene (an important feedstock in the chemical industry) on graphitic carbon electrodes via succinic acid as the central intermediate. In conclusion, with its focus on improving efficiencies, achieving selective product formation, building versatile platforms, diversifying substrate and product scope, and reducing carbon footprint and economic strain, this thesis aims to bring sustainable waste-to-fuel technologies a step closer to commercial implementation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Wiley Authors: Batidzirai, Batidzirai; van der Hilst, Floortje; Meerman, Hans; Junginger, Martin H.; +1 AuthorsBatidzirai, Batidzirai; van der Hilst, Floortje; Meerman, Hans; Junginger, Martin H.; Faaij, André P C;doi: 10.1002/bbb.1458
AbstractThis study compared the economic and environmental impacts of torrefaction on bioenergy supply chains against conventional pellets for scenarios where biomass is produced in Mozambique, and undergoes pre‐processing before shipment to Rotterdam for conversion to power and Fischer‐Tropsch (FT) fuels. We also compared the impacts of using different land quality (productive and marginal) for feedstock production, feedstocks (eucalyptus and switchgrass), final conversion technologies (XtY and CXtY) and markets (the Netherlands and Mozambique). At current conditions, the torrefied pellets (TOPs) are delivered in Rotterdam at higher cost (7.3–7.5 $/GJ) than pellets (5.1–5.3 $/GJ). In the long term, TOPs costs could decline (4.7–5.8 $/GJ) and converge with pellets. TOPs supply chains also incur 20% lower greenhouse gas (GHG) emissions than pellets. Due to improved logistics and lower conversion investment, fuel production costs from TOPs are lower (12.8–16.9 $/GJFT) than from pellets (12.9–18.7 $/GJFT). Co‐firing scenarios (CXtY) result in lower cost fuel (but a higher environmental penalty) than 100% biomass fired scenarios (XtY). In most cases, switchgrass and the productive region of Nampula provide the lowest fuel production cost compared to eucalyptus and the marginally productive Gaza region. Both FT and ion in Mozambique are more costly than in Rotterdam. For the Netherlands, both FT and power production are competitive against average energy costs in Western Europe. The analysis shows that large‐scale bioenergy production can become competitive against fossil fuels. While the benefits of TOPs are apparent in logistics and conversion, the current higher torrefaction costs contribute to higher biofuel costs. Improvements in torrefaction technology can result in significant performance improvements over the future chain. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Elsevier BV Authors: Eva Lieberherr; Bernhard Truffer;This paper analyzes the ability of water utilities to contribute to sustainability transition processes. More specifically, we compare the capacity of utilities, embedded in purely public, mixed and largely private governance modes, to innovate. We employ dynamic capabilities as core indicators for innovativeness and therefore as major enabling factors for sustainable sector transitions. We assess the relationship between governance modes and innovation by conducting an in-depth comparative analysis of three water utilities, each within a differing governance mode along the public-to-private continuum: Zurich, Berlin and Leeds. While we find that the private and mixed governance modes have an increased degree of innovativeness, they perform lower in terms of static sustainability criteria than the public mode. We therefore conclude that the impact of privatization on sustainability transitions in the water sector involves multi-dimensional trade-offs between static and dynamic sustainability criteria.
Utrecht University R... arrow_drop_down Environmental Innovation and Societal TransitionsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Innovation and Societal TransitionsArticle . 2015Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eist.2013.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Environmental Innovation and Societal TransitionsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Innovation and Societal TransitionsArticle . 2015Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eist.2013.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Informa UK Limited Authors: Setareh Katircioglu; Salih Katircioglu;handle: 11467/6089
This article searches the effects of tourism development onemission pollutants in Malta using (1) the autoregressivedistributed lag approach and (2) two datasets which are annualdata from 1971 to 2018 and quarterly data from 1990Q1 tı2018Q4 as per data availability. Findings confirm that tourism,energy usage, and carbon dioxide emissions are in a long-termequilibrium relationship; carbon emissions converge rapidlytowards the long-term equilibrium path through tourism andenergy consumption channels. Findings also reveal that growthin tourism results in significant changes in energy consumptionand, therefore, in CO2emissions. Tourism has positive effects oncarbon emissions in shorter periods. Still, these effects turn out tobe harmful in the more extended periods beyond the peak pointof carbon emissions which correspond to 1,063,213 milliontourists. Therefore, this study strongly confirms the existence ofan inverted U-shaped Environmental Kuznets Curve hypothesisfor Malta.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02642069.2022.2086977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02642069.2022.2086977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2021Publisher:Fen Bilimleri Enstitüsü Authors: Saçakli, Emel;SUMMARY INVESTIGATION OF HEAVY METAL EMISSIONS OF COALS DURING COMBUSTION FROM HOT WATER BOILER AND STOVE Coal is likely to become an increasingly important fuel for electrical energy production during the next two decades. This trend appears inevitable due to the decreased emphasis on the construction of nuclear plants and relatively minor short-term impact usually projected for alternate energy sources (solar and geothermai). The emissions of environmental concern from coal fired plants may be divided into four categories: (1) SO2 and SO3 (2) NO and NO2 (3) organic compounds and (4) inorganic compounds. The organic and inorganic compounds include both gas phase emissions (such PAH emissions and mercury vapor) and particulate emissions (e.g. soot and fly ash). While the chemistry associated with the formation and ultimate fate of coal sulphur and nitrogen has been fairly well-defined, until recently the chemical nature and fates of the remaining trace elements during and following combustion have attracted considerably less interest. The control of particulate emissions has been of concern for many years, but with emphasis being placed primarily on the visible stack emissions from the combustion facilities. Recent research into the nature of the inorganic emissions from coal-fired power plants, however, has given reason for renewed concern. These results indicate that particulate emissions may be greatly enriched in certain trace elements, and that these trace elements may be in chemical for physical forms, which have an enhanced impact upon man. To understand the complex chemistry involved in the trace element enrichment process during coal combustion one must know something of the chemical/or physical nature of these elements in coal. The majority of trace elements in coal are associated with the inorganic mineral matter present in all coals. This mineral matter consists primarily of clays (aluminosilicates), quartz (SİO2), carbonates, sulphides, sulphates and oxides. The trace elements may also be associated with the coal macerals, having been present in the original vegetation from which the coal was formed. While many trace elements, have primarily either organic or inorganic associations some trace elements show an affinity for both fractions. During combustion the mineral matter undergoes both decomposition and transformation reactions which may result in the release of the more volatile elements. The ultimate fate of the trace elements will largely depend oncontent and initial concentration of the trace elements in the coal combustion temperature of the facilities particle size of the ashes, operation temperature of the control systems. In recent years, attention has been directed rather more to the elemental composition of the dust rather than to its nuisance value with some stress on the trace elements likely to be present-particularly the heavy metals. Whereas the coal before combustion has on elemental composition broadly similar to soils and crustal rocks-and hence similar to the natural dust content of the atmosphere the combustion process acts to concentrate a number of elements into the ash and dust by a concentration factor of five or six. Beyond this, a number of the more volatile elements re-condense after combustion preferentially on to the finer particles-because of their greater specific surface area enhancing the concentration of these elements by on even greater factor. Elements may be divided into two groups on the basis of their concentration dependence upon particle size: those, which show no enrichment in the smallest particles, and those, which are enriched. The primary interest is with the enriched elements, since they are most likely to have a significant environmental impact. Results of analyses of fly ash as a function of particle size at laboratory indicate that the elements Mn, Ba, V, Cr, Co, Ni, Cu, Ga, Nd, As, Sb, Sn, Br, Zn, Se, Pb, Hg and S are volatilized to a significant extent in the combustion process. The elements Mg, Ti, Na, K, Mo, Ce, Rb, Cs and Nb appear to have a smaller fraction volatilized during coal combustion, or have significant variations in behavior between plants. The remaining elements, Si, Al, Fe, Ca, Sr, La, Sm, Eu, Tb, Py, Yb, Y, Sc, Zr, Ta, Na, Th, Ag and In, are either not volatilized, or may show minor trends which might be related to the geochemistry of the mineral matter. The most important phenomenon of the trace element distribution is that of the vaporisation-condensation, which is present in all stages of combustion process. That is why the combustion temperature has the most relevant role to play in the distribution of trace elements in combustion products, the ideal situation is to have an exact knowledge of the chemical form of the elements and the operating temperature of the boiler and of the control systems. Thus, it should be possible to determine the fate of the trace elements fairly exactly. The analytical results provide firm evidence that a volatilization-condensation process account for the trace element enrichment observed in the fly ash emitted from coal-fired power plants. The enrichment process results from condensation of volatilized material preferentially upon the smaller fly ash particles. A relationship in which the concentration is proportional to D`2 usually applies for particles larger than 1-15 um in diameter. For smaller particles, in situations where other particle formation mechanisms become, important, or where the thickness of the condensed material becomes appreciable, a more detailed approach appears to more correctly describe the concentration dependence upon particle size. In some cases, the concentration of volatilized elements becomes independent of particle size for particles as large as several microns in diameter. Some mechanisms have been postulated to explain these observations. xiIf the combustion conditions are always maintained the same and the coals used come from the same coal basin, which mean similar properties and rank of coal, a prediction of the trace elements destination in the final products, through correlations and the mathematical models, will be possible The volatilized elements, which condense upon, fly ash before particulate collection devices are often emitted into the atmosphere in greater abundance by a factor of up to 10 or more than elements not volatilized. These elements include As, Sb, Pb, Cd, V, Mo, Zn, Ga, Cr and U. These elements would typically have a 10-10 greater probability of pulmonary deposition upon respiration. Elements which are totally volatilized during combustion and which do not condense on particulate matter before the pollution control devices will often be emitted to the atmosphere in approximately 10 or greater abundance than elements not volatilized during combustion. These elements include the hologens, Hg, significant partions of the Se, B and perhaps-other elements such as Pb and Sb. These elements have 10 -10, or even greater, probability of pulmonary deposition upon respiration respiration than elements not volatilized during combustion. Further, these elements may be enriched by two to three orders of magnitute in the low temperature coal ash compared to their crustal abundance, leading to enrichment factors of 10 or greater for pulmonary deposition relative to the crustal abundance. The situation for the elements which are primarily in the gas phase at stack temperatures is similar to organic compounds, which include numerous mutagenic polycyclic aromatic hydrocarbons, which also rapidly become associated with the fly ash after leaving the stack by either condensation or adsorption processes. There are still several major gaps in existing knowledge of the trace element chemistry during coal combustion processes. When these gaps are filled, it should be possible to predict (at least semiquantatively) the extent of trace element emissions for a certain coal in a given coal-fired power plant. As noted above, the major affecting the trace element emissions from coal-fired power plants is the volatility, of the element during the combustion process. This necessarily involves a more complete understanding of volatilization from complex mineral phases and the fate of `organically-associated` species during combustion. In addition to the volatility of trace elements, the particle size distribution plays a major role in determining the emission rates for elements, which condense before the particle collection devices. Shifting the size distribution to smaller sizes will increase the emission rates due to a drop in collection efficiency for nearly all devices for 0.1-1.0 jim diameter particles. The size distribution may be altered by the combustion conditions. Research is necessary to determine the size distribution of particles resulting from the bursting or fracturing process and the dependence on combustion conditions and coal composition. Since the major parameters are likely to be the heating rate and composition of the particle, this process may be amenable to quantative treatment Regardless, it is important to determine if increased combustion xutemperatures necessarily increase the abundance of submicron particles if so, this factor would have to be considered in evaluating the advantages of increased combustion temperatures (e.g. increased plant efficiency, lower emission rates for other pollutants, etc.). Research must also address questions concerning the rate particle growth during combustion. Other problems involve the nature of the diffusion and crystal growth of trace species in ply ash particles after formation. Increased efforts should also be applied to the development of techniques for actual sampling of the high temperature combustion region. Ideally, these techniques should analyze major, minor and trace species in the gas phase and the particle size distribution well in to the condensation nuclei range, as well as elemental concentrations in the particulate matter as a function of particle size. Knowledge of the size distributions and compositions of the particulate phase through a combustion facility will be vital 10 a complete understanding of the combustion process and fly ash formation. The impact of new combustion and pollution control technologies must be care fully evaluated. And, there is an obvious need for more extensive and careful measurements of trace element emissions and particle size distributions from the various types of coal- fired plants. For example, particulate sampling methods need to be developed which avoid the loss of components with high vapour pressures. To increase the usefulness of these measurements, the coal should be analyzed, and the affinities determined for important trace element. Attempts should also be mode to determine the particle size distribution before the pollution control devices, and in the plume after most species emitted in the gas phase have become associated with the particles. There is also a need to understand the chemical and physical processes which the rates and temperatures at which the volatile species become associated with fly ash. A drop in the operating temperatures of pollution control devices may significantly reduce the emissions of these species. The correlation of these data with plant design and combustion conditions con provide both valuable emprical data on other factors affecting trace element emission rates and the means of greatly limiting the atmospheric discharge of trace element. To emphasize the effect of domesting heating to the air pollution in Turkey, concentrations of heavy metals in gas phase and in particular phase emitted from some kinds of lignite which are combusted extensively using the boiler and the stove have been studied. Gas sampling was carried out by passing the flue gas, sampled by a pump, through a thimble to remove the solid particles and extracting the trace elements in impingers including 0.1 N nitric acid. The stack particulates were sampled isokinetically using Andersen Universal Stack Sampler for the boiler and the small system for the stove and collected in the thimble for both stove and boiler. xmAll samples were chemically analyzed using a number of techniques including atomic absorption spectrophotometry. Datas of the coal combustion have been compared with each other and limit values of `Air Quality Assurance Regulation`. xiv ÖZET Hava kirliliğinin ülkemizde, özellikle bazı büyük şehirlerde giderek arttığı ve tehlikeli sonuçlar meydana getirdiği görülmektedir. Bu noktada dikkatler gerek enerji üretimi ve gerekse endüstriyel ve evsel gereksinmeler için yaygın olarak kullanılan kömür üzerine çekilmelidir. Kömürlerin yaygın olarak kullanılması diğer kirleticilerle birlikte ağır metallerinden atmosferdeki taşınımını arttırmaktadır. Bu çalışmada 80 000 kcal/h kapasiteli, TSE belgeli, elle yüklemeli, ızgaralı, üstten yanmalı ve iki kapaklı sobada çeşitli kömür örnekleriyle yanma deneyleri gerçekleştirilmiştir. Kazan deneylerinde %37 nemli Yeniköy Ağaçlı, nemi %20 civarına getirilmiş Yeniköy Ağaçlı-Güney Afrika harman, nemi %20 civarlarında bulunan Yeniköy Ağaçlı-Sibirya harman kömür örnekleri, soba deneylerinde %37 nemli Yeniköy Ağaçlı, nemi %20 civarına getirilmiş Yeniköy Ağaçlı-Güney Afrika harman, nemi %21 civarlarına getirilmiş Yeniköy Ağaçlı, nemi %15 civarına getirilmiş Yeniköy Ağaçlı kömür örnekleri kullanılmıştır. Yanma deneylerinde gerçekleştirilen emisyon ölçümleri sonucunda her kömür için ağır metallerin toz ve gaz fazdaki atmosferik yayınımlarına yanma sistemlerinin ve kömür cinslerinin etkileri araştırılmış ayrıca elde edilen sonuçlar Türk ve Alman yönetmeliklerinde (Hava Kalitesinin Korunması Yönetmeliği ve TA-Luft) sınır değerlerle de mukayese edilmiştir. ıx 132
YÖK Açık Bilim - CoH... arrow_drop_down YÖK Açık Bilim - CoHE Open ScienceMaster thesis . 2021License: CC BYData sources: YÖK Açık Bilim - CoHE Open Scienceadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10208::4f0952e8fead38450292c4ebf5ac0fb7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert YÖK Açık Bilim - CoH... arrow_drop_down YÖK Açık Bilim - CoHE Open ScienceMaster thesis . 2021License: CC BYData sources: YÖK Açık Bilim - CoHE Open Scienceadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10208::4f0952e8fead38450292c4ebf5ac0fb7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Switzerland, NetherlandsPublisher:Elsevier BV Martin Kumar Patel; Martin Kumar Patel; M. Draeck; Dolf Gielen; Ernst Worrell; Deger Saygin;Fossil fuel substitution with biomass is one of the measures to reduce carbon dioxide (CO2) emissions. This paper estimates the cost-effectiveness of raising industrial steam and producing materials (i.e. chemicals, polymers) from biomass. We quantify their long-term global potentials in terms of energy saving, CO2 emission reduction, cost and resource availability. Technically, biomass can replace all fossil fuels used for the production of materials and for generating low and medium temperature steam. Cost-effective opportunities exist for steam production from biomass residues and by substitution of high value petrochemicals which would together require more than 20 exajoules (EJ) of biomass worldwide in addition to baseline by 2030. Potentials could double in 2050 and reach 38-45 EJ (25% of the total industrial energy use), with most demand in Asia, other developing countries and economies in transition. The economic potential of using biomass as chemical feedstock is nearly as high as for steam production, indicating its importance. The exploitation of these potentials depends on energy prices and industry's access to biomass supply. Given the increasing competition for biomass from several economic sectors, more resource efficient materials need to be developed while steam production is already attractive due to its high effectiveness for reducing CO2 emissions per unit of biomass.
Utrecht University R... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.07.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.07.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2023 PortugalAuthors: Santos, Rafael de Matos Ferreira da Mota;handle: 10400.22/24114
A indústria petrolífera, que tem como um dos produtos o plástico, e a do ferro e aço são das maiores emissoras mundiais de Gases com Efeito de Estufa (GEE). Assim, atualmente, com as crescentes preocupações ambientas da população, torna-se urgente estudar o impacte ambiental das fábricas produtoras de embalagens de plástico e metal. Desse modo, a presente dissertação foi realizada na Colep Packaging Portugal e teve como objetivo calcular a pegada de carbono da fábrica referente ao ano de 2022. A avaliação da pegada de carbono foi realizada tendo como linhas orientadoras a metodologia Greenhouse Gas Protocol e sempre que possível, foram utilizados os fatores de emissão de origem primária. A pegada de carbono é dividida em três âmbitos: o primeiro é referente às emissões diretas da empresa relatora; o segundo são emissões indiretas para a produção de energia; o terceiro refere-se a emissões que ocorrem como consequência da atividade da empresa relatora. É possível afirmar que este mesmo objetivo foi atingido, obtendo-se como resultado 7 408,235 t CO2 eq de âmbito 1 (7,03%), 2 846,705 t CO2 eq de âmbito 2 (2,70%) e 95 075,239 t CO2 eq de âmbito 3 (90,27%). Globalmente, o valor calculado foi 105 330,179 t CO2 eq. As categorias que mais contribuíram para este valor da pegada de carbono são os bens e serviços adquiridos, o fim de vida dos produtos vendidos e o consumo de gás natural. Estas três categorias emitiram, em 2022, 87 732,707 t CO2 eq, o que corresponde a 83,29% das emissões totais da Colep Packaging Portugal. Para calcular a pegada de carbono foi necessário realizar um inventário, em primeiro lugar, aos tipos de energia consumida. Nestes parâmetros estão incluídos o gás natural, propano, gasóleo, gasolina e líquidos refrigerantes para o âmbito 1 e a eletricidade para o âmbito 2. Foi também realizado um inventário para o âmbito 3 a todas as matérias-primas, serviços e bens capitais adquiridos, ao transporte a montante (de matérias-primas) e a jusante (de produtos vendidos), aos resíduos gerados no processo produtivo, às viagens de negócios e diárias dos colaboradores, aos bens alugados a montante (veículos de leasing e paletes) e a jusante (edifícios), ao processamento dos produtos vendidos e ao fim de vida destes. Também se analisou o uso dos produtos vendidos, os franchises da empresa e os investimentos, porém, estas categorias não registaram valores. De maneira a reduzir o valor da pegada de carbono sugere-se a realização de algumas medidas. Ao todo são 16 de onde se destacam a substituição dos veículos a combustão por elétricos, a utilização de camiões elétricos, a utilização de energia 100% renovável, a utilização de comboios para transporte superior a 250 km, a instalação de painéis solares, o aumento da eficiência energética e a incorporação de reciclado nas embalagens metálicas. Ao serem implementadas, as 16 medidas permitem reduzir em 54 262,702 t CO2 eq, o que corresponde a 51,52% do atual valor global.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2595::67eb2cca17dacea22b5d7426c394f961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2595::67eb2cca17dacea22b5d7426c394f961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Thesis 2023 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Gomezgil Yaspik, Vianney;doi: 10.17863/cam.102122
In recent decades, many societal changes have unfolded, including population ageing, reconfigurations of household structures, labour market transformation, and a secular deceleration of economic growth. These shifts pose considerable challenges to preexisting welfare states, particularly to the efficacy of countries’ pension systems. This dissertation examines the context and trajectory of pension reforms in Mexico, the United Kingdom, and the United States. Its contribution is to ascertain the viability and political feasibility of reforms that enhance the financial sustainability of their pension systems, while maintaining adequate income and coverage levels. The dissertation builds on political economy approaches and on the institutionalist literature, which highlight how the role of interest groups and structure of institutions and political systems shape policy outcomes. The frameworks of blame avoidance and credit-claiming are also considered, to provide a comprehensive analysis of the complex dynamics surrounding pension systems and reform efforts. This dissertation uses a mixed-methods approach – including public opinion surveys of 3,000+ individuals, semi-structured elite interviews, historical document analyses, and specialized fiscal and actuarial projections of selected pension reforms in the three selected countries. It addresses three core research questions: 1) What is the current context for pension reform in Mexico, the United Kingdom, and the United States given their histories? 2) Is the necessary (for achieving specific minimum levels of sustainability, adequacy, and coverage) pension reform politically feasible? 3) How do the characteristics of each reform affect its political feasibility? Corollary: The modification of which channel (benefits, contributions, retirement age) is perceived as more politically feasible for diverse stakeholders? The methodology chosen provides a timely picture of the context surrounding potential pension reforms in the three case studies. In Mexico, credit-claiming and the interests of private stakeholders explain the success of recent pension reforms, and partisan politics are the key determinants for future fiscal changes. For the United Kingdom, the institutionalist literature helps explain the reasons for the relatively easier reform avenues; the most politically feasible reforms are those in the private sector, while the housing market is of key importance for pensions. In the United States, the institutionalist literature and the framework of blame avoidance also help explain the current legislative gridlock and the reasons why no major reform has been enacted for decades. For Mexico and the United Kingdom there exist politically feasible reforms, notably a modification of the retirement age channel, that can increase the system’s sustainability while maintaining income adequacy and coverage; whereas based on the current context of extreme polarisation and legislative gridlock, there do not seem to exist politically feasible pension reforms that preserve the structure of Social Security in the United States. The dissertation brings the lens of political feasibility to bear on a previously technical literature on the structure of the pension systems in the three countries, and thus on the feasibility of reform to deliver financial sustainability, adequacy of retirement incomes, and adequate coverage of the old age population. It identifies the feasible routes for reform in Mexico and the United Kingdom, but concludes that the political economy context the United States has reached rules out feasible reforms of its current pension structures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.102122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.102122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Authors: Erten, Duygu; Kılkış, Birol;handle: 20.500.12511/8719
According to the second law of thermodynamics, all human activities cause exergy destructions, adding to additional root causes for carbon dioxide emissions responsibility. It means that current carbon dioxide concentrations are accurately observed, but the root causes and their potential solutions against global warming fall short of achieving the goals of the Paris agreement by almost 45% in terms of decarbonization efforts, as shown in this paper. This result applies to all activities, including the green facility concept. In this respect, the primary aim of this paper is to raise awareness about the essence of the Second Law of Thermodynamics in expanding the green facility concept to reach more effective and sustainable rating methodologies concerning the climate crisis. A new evaluating and rating model with a set of exergy-based green building metrics that relate additional carbon dioxide emissions to irreversible exergy destructions has been developed. Examples about apparently green buildings according to the First Law of Thermodynamics are given by showing that these buildings are not green due to additional carbon dioxide emissions responsibility due to exergy destructions. An airport terminal building case is elaborated. It has been shown that although part of the electricity comes from a third-party wind energy provider, it ends up with carbon dioxide emissions responsibility because it is not entirely used in exergy-rational demand points and compares less favorably with an on-site cogeneration system using natural gas by about 30% more emissions responsibility. The results and derivations of new metrics are discussed, which shed light on adding new criteria to existing green building certification programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Italy, GermanyPublisher:Elsevier BV Stefano Campanari; S. Cerniauskas; S. Cerniauskas; Martin Robinius; Paolo Colbertaldo; Detlef Stolten; Detlef Stolten; T. Grube;handle: 11311/1146016
Abstract As main contributors to greenhouse gas emissions, power and transportation are crucial sectors for energy system decarbonization. Their interaction is expected to increase significantly: plug-in electric vehicles add a new electric load, increasing grid demand and potentially requiring substantial grid upgrade; hydrogen production for fuel cell electric vehicles or for clean fuels synthesis could exploit the projected massive power overgeneration by intermittent and seasonally-dependent renewable sources via Power-to-Hydrogen. This work investigates the infrastructural needs involved with a broad diffusion of clean mobility, adopting a sector integration perspective at the national scale. The analysis combines a multi-node energy system balance simulation and a techno-economic assessment of the infrastructure to deliver energy vectors for mobility. The article explores the long-term case of Italy, considering a massive increase of renewable power generation capacity and investigating different mobility scenarios, where low-emission vehicles account for 50% of the stock. First, the model solves the energy balances, integrating the consumption related to mobility energy vectors and taking into account power grid constraints. Then, an optimal infrastructure is identified, composed of both a hydrogen delivery network and a widespread installation of charging points. Results show that the infrastructural requirements bring about investment costs in the range of 43–63 G€. Lower specific costs are associated with the exclusive presence of FCEVs, whereas the full reliance on BEVs leads to the most significant costs. Scenarios that combine FCEVs and BEVs lie in between, suggesting that the overall power + mobility system benefits from the presence of both drivetrain options.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2023Embargo end date: 14 Jul 2023 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Bhattacharjee, Subhajit;doi: 10.17863/cam.99818
The aggravating global problems of energy crisis, rising atmospheric greenhouse gas concentrations and accumulation of persistent waste have attracted the attention of scientists, policy-makers and global organisations to come up with effective and expeditious solutions to address these challenges. In this context, the development of sustainable technologies driven by renewable energy sources for the production of clean fuels and commodity chemicals from diverse waste feedstocks is an appealing approach towards creating a circular economy. Over the years, semiconductor photocatalysts based on TiO₂, CdS, carbon-nitrides (CNx) and carbon dots (CDs) have been widely used for the photocatalytic reforming (PC reforming) of pre-treated waste substrates to organic products, accompanied with clean hydrogen (H₂) generation. However, these conventional solar-driven processes suffer from major drawbacks such as low production rates, poor product selectivity, CO₂ release, challenging process and catalyst optimisation, and harsh waste pre-treatment conditions, which limit their commercial applicability. These challenges are tackled in this thesis with the introduction of new and efficient photoelectrochemical (PEC) and chemoenzymatic processes for reforming a diverse range of waste feedstocks to sustainable fuels. Solar-driven PEC reforming based on halide perovskite light-absorber is first developed as an attractive alternative to PC reforming. The PEC systems consist of a perovskite|Pt photocathode for clean H₂ production and a Cu-Pd alloy anode for reforming diverse waste streams, including pre-treated cellulosic biomass, polyethylene terephthalate (PET) plastics, and industrial by-product glycerol into industrially-relevant, value-added chemicals (gluconic acid, glycolic acid and glyceric acid) without any externally applied bias or voltage. Additionally, the single light-absorber PEC systems can also convert the airborne waste stream and greenhouse gas CO₂ to diverse products with the simultaneous reforming of PET plastics with no applied voltage. The perovskite-based photocathode enables the integration of different CO₂ reduction catalysts such as a molecular cobalt porphyrin, a Cu-In alloy and formate dehydrogenase enzyme, which produce CO, syngas and formate, respectively. The versatile PEC systems, which can be assembled in either a ‘two-compartment’ or standalone ‘artificial leaf’ configurations achieve 60‒90% oxidation product selectivity (with no over-oxidation) and >100 µmol cm‾² h‾¹ product formation rates, corresponding to 10²‒10⁴ times higher activity than conventional PC reforming systems. In addition to developing PEC platforms, this thesis also explores avenues for circumventing the harsh alkaline pre-treatment strategies (pH >13, 60‒80 ºC) adopted for photoreforming waste substrates. For this purpose, a chemoenzymatic pathway is introduced whereby PET and polycaprolactone plastics were deconstructed using functional enzymes under benign conditions (pH 6‒8, 37‒65 ºC), followed by PC reforming using Pt loaded TiO₂ (TiO₂|Pt) or Ni₂P loaded carbon-nitride (CNx|Ni₂P) photocatalysts. The chemoenzymatic reforming process demonstrates versatility in upcycling polyester films and nanoplastics for H₂ production at high yields reaching ∼10³‒10⁴ µmol gsub‾¹ and activities at >500 µmol gcat‾¹ h‾¹. The utilisation of enzyme pre-treated plastics also allowed the coupling of plastic reforming with photocatalytic CO₂-to-syngas conversion using a phosphonated cobalt bis(terpyridine) co-catalyst immobilised on TiO₂ (TiO₂|CotpyP). Finally, moving beyond solar-driven systems, a bio-electrocatalytic flow process is demonstrated for the conversion of microbe pre-treated food waste to ethylene (an important feedstock in the chemical industry) on graphitic carbon electrodes via succinic acid as the central intermediate. In conclusion, with its focus on improving efficiencies, achieving selective product formation, building versatile platforms, diversifying substrate and product scope, and reducing carbon footprint and economic strain, this thesis aims to bring sustainable waste-to-fuel technologies a step closer to commercial implementation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Wiley Authors: Batidzirai, Batidzirai; van der Hilst, Floortje; Meerman, Hans; Junginger, Martin H.; +1 AuthorsBatidzirai, Batidzirai; van der Hilst, Floortje; Meerman, Hans; Junginger, Martin H.; Faaij, André P C;doi: 10.1002/bbb.1458
AbstractThis study compared the economic and environmental impacts of torrefaction on bioenergy supply chains against conventional pellets for scenarios where biomass is produced in Mozambique, and undergoes pre‐processing before shipment to Rotterdam for conversion to power and Fischer‐Tropsch (FT) fuels. We also compared the impacts of using different land quality (productive and marginal) for feedstock production, feedstocks (eucalyptus and switchgrass), final conversion technologies (XtY and CXtY) and markets (the Netherlands and Mozambique). At current conditions, the torrefied pellets (TOPs) are delivered in Rotterdam at higher cost (7.3–7.5 $/GJ) than pellets (5.1–5.3 $/GJ). In the long term, TOPs costs could decline (4.7–5.8 $/GJ) and converge with pellets. TOPs supply chains also incur 20% lower greenhouse gas (GHG) emissions than pellets. Due to improved logistics and lower conversion investment, fuel production costs from TOPs are lower (12.8–16.9 $/GJFT) than from pellets (12.9–18.7 $/GJFT). Co‐firing scenarios (CXtY) result in lower cost fuel (but a higher environmental penalty) than 100% biomass fired scenarios (XtY). In most cases, switchgrass and the productive region of Nampula provide the lowest fuel production cost compared to eucalyptus and the marginally productive Gaza region. Both FT and ion in Mozambique are more costly than in Rotterdam. For the Netherlands, both FT and power production are competitive against average energy costs in Western Europe. The analysis shows that large‐scale bioenergy production can become competitive against fossil fuels. While the benefits of TOPs are apparent in logistics and conversion, the current higher torrefaction costs contribute to higher biofuel costs. Improvements in torrefaction technology can result in significant performance improvements over the future chain. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Elsevier BV Authors: Eva Lieberherr; Bernhard Truffer;This paper analyzes the ability of water utilities to contribute to sustainability transition processes. More specifically, we compare the capacity of utilities, embedded in purely public, mixed and largely private governance modes, to innovate. We employ dynamic capabilities as core indicators for innovativeness and therefore as major enabling factors for sustainable sector transitions. We assess the relationship between governance modes and innovation by conducting an in-depth comparative analysis of three water utilities, each within a differing governance mode along the public-to-private continuum: Zurich, Berlin and Leeds. While we find that the private and mixed governance modes have an increased degree of innovativeness, they perform lower in terms of static sustainability criteria than the public mode. We therefore conclude that the impact of privatization on sustainability transitions in the water sector involves multi-dimensional trade-offs between static and dynamic sustainability criteria.
Utrecht University R... arrow_drop_down Environmental Innovation and Societal TransitionsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Innovation and Societal TransitionsArticle . 2015Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eist.2013.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Environmental Innovation and Societal TransitionsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Innovation and Societal TransitionsArticle . 2015Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eist.2013.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Informa UK Limited Authors: Setareh Katircioglu; Salih Katircioglu;handle: 11467/6089
This article searches the effects of tourism development onemission pollutants in Malta using (1) the autoregressivedistributed lag approach and (2) two datasets which are annualdata from 1971 to 2018 and quarterly data from 1990Q1 tı2018Q4 as per data availability. Findings confirm that tourism,energy usage, and carbon dioxide emissions are in a long-termequilibrium relationship; carbon emissions converge rapidlytowards the long-term equilibrium path through tourism andenergy consumption channels. Findings also reveal that growthin tourism results in significant changes in energy consumptionand, therefore, in CO2emissions. Tourism has positive effects oncarbon emissions in shorter periods. Still, these effects turn out tobe harmful in the more extended periods beyond the peak pointof carbon emissions which correspond to 1,063,213 milliontourists. Therefore, this study strongly confirms the existence ofan inverted U-shaped Environmental Kuznets Curve hypothesisfor Malta.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02642069.2022.2086977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02642069.2022.2086977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2021Publisher:Fen Bilimleri Enstitüsü Authors: Saçakli, Emel;SUMMARY INVESTIGATION OF HEAVY METAL EMISSIONS OF COALS DURING COMBUSTION FROM HOT WATER BOILER AND STOVE Coal is likely to become an increasingly important fuel for electrical energy production during the next two decades. This trend appears inevitable due to the decreased emphasis on the construction of nuclear plants and relatively minor short-term impact usually projected for alternate energy sources (solar and geothermai). The emissions of environmental concern from coal fired plants may be divided into four categories: (1) SO2 and SO3 (2) NO and NO2 (3) organic compounds and (4) inorganic compounds. The organic and inorganic compounds include both gas phase emissions (such PAH emissions and mercury vapor) and particulate emissions (e.g. soot and fly ash). While the chemistry associated with the formation and ultimate fate of coal sulphur and nitrogen has been fairly well-defined, until recently the chemical nature and fates of the remaining trace elements during and following combustion have attracted considerably less interest. The control of particulate emissions has been of concern for many years, but with emphasis being placed primarily on the visible stack emissions from the combustion facilities. Recent research into the nature of the inorganic emissions from coal-fired power plants, however, has given reason for renewed concern. These results indicate that particulate emissions may be greatly enriched in certain trace elements, and that these trace elements may be in chemical for physical forms, which have an enhanced impact upon man. To understand the complex chemistry involved in the trace element enrichment process during coal combustion one must know something of the chemical/or physical nature of these elements in coal. The majority of trace elements in coal are associated with the inorganic mineral matter present in all coals. This mineral matter consists primarily of clays (aluminosilicates), quartz (SİO2), carbonates, sulphides, sulphates and oxides. The trace elements may also be associated with the coal macerals, having been present in the original vegetation from which the coal was formed. While many trace elements, have primarily either organic or inorganic associations some trace elements show an affinity for both fractions. During combustion the mineral matter undergoes both decomposition and transformation reactions which may result in the release of the more volatile elements. The ultimate fate of the trace elements will largely depend oncontent and initial concentration of the trace elements in the coal combustion temperature of the facilities particle size of the ashes, operation temperature of the control systems. In recent years, attention has been directed rather more to the elemental composition of the dust rather than to its nuisance value with some stress on the trace elements likely to be present-particularly the heavy metals. Whereas the coal before combustion has on elemental composition broadly similar to soils and crustal rocks-and hence similar to the natural dust content of the atmosphere the combustion process acts to concentrate a number of elements into the ash and dust by a concentration factor of five or six. Beyond this, a number of the more volatile elements re-condense after combustion preferentially on to the finer particles-because of their greater specific surface area enhancing the concentration of these elements by on even greater factor. Elements may be divided into two groups on the basis of their concentration dependence upon particle size: those, which show no enrichment in the smallest particles, and those, which are enriched. The primary interest is with the enriched elements, since they are most likely to have a significant environmental impact. Results of analyses of fly ash as a function of particle size at laboratory indicate that the elements Mn, Ba, V, Cr, Co, Ni, Cu, Ga, Nd, As, Sb, Sn, Br, Zn, Se, Pb, Hg and S are volatilized to a significant extent in the combustion process. The elements Mg, Ti, Na, K, Mo, Ce, Rb, Cs and Nb appear to have a smaller fraction volatilized during coal combustion, or have significant variations in behavior between plants. The remaining elements, Si, Al, Fe, Ca, Sr, La, Sm, Eu, Tb, Py, Yb, Y, Sc, Zr, Ta, Na, Th, Ag and In, are either not volatilized, or may show minor trends which might be related to the geochemistry of the mineral matter. The most important phenomenon of the trace element distribution is that of the vaporisation-condensation, which is present in all stages of combustion process. That is why the combustion temperature has the most relevant role to play in the distribution of trace elements in combustion products, the ideal situation is to have an exact knowledge of the chemical form of the elements and the operating temperature of the boiler and of the control systems. Thus, it should be possible to determine the fate of the trace elements fairly exactly. The analytical results provide firm evidence that a volatilization-condensation process account for the trace element enrichment observed in the fly ash emitted from coal-fired power plants. The enrichment process results from condensation of volatilized material preferentially upon the smaller fly ash particles. A relationship in which the concentration is proportional to D`2 usually applies for particles larger than 1-15 um in diameter. For smaller particles, in situations where other particle formation mechanisms become, important, or where the thickness of the condensed material becomes appreciable, a more detailed approach appears to more correctly describe the concentration dependence upon particle size. In some cases, the concentration of volatilized elements becomes independent of particle size for particles as large as several microns in diameter. Some mechanisms have been postulated to explain these observations. xiIf the combustion conditions are always maintained the same and the coals used come from the same coal basin, which mean similar properties and rank of coal, a prediction of the trace elements destination in the final products, through correlations and the mathematical models, will be possible The volatilized elements, which condense upon, fly ash before particulate collection devices are often emitted into the atmosphere in greater abundance by a factor of up to 10 or more than elements not volatilized. These elements include As, Sb, Pb, Cd, V, Mo, Zn, Ga, Cr and U. These elements would typically have a 10-10 greater probability of pulmonary deposition upon respiration. Elements which are totally volatilized during combustion and which do not condense on particulate matter before the pollution control devices will often be emitted to the atmosphere in approximately 10 or greater abundance than elements not volatilized during combustion. These elements include the hologens, Hg, significant partions of the Se, B and perhaps-other elements such as Pb and Sb. These elements have 10 -10, or even greater, probability of pulmonary deposition upon respiration respiration than elements not volatilized during combustion. Further, these elements may be enriched by two to three orders of magnitute in the low temperature coal ash compared to their crustal abundance, leading to enrichment factors of 10 or greater for pulmonary deposition relative to the crustal abundance. The situation for the elements which are primarily in the gas phase at stack temperatures is similar to organic compounds, which include numerous mutagenic polycyclic aromatic hydrocarbons, which also rapidly become associated with the fly ash after leaving the stack by either condensation or adsorption processes. There are still several major gaps in existing knowledge of the trace element chemistry during coal combustion processes. When these gaps are filled, it should be possible to predict (at least semiquantatively) the extent of trace element emissions for a certain coal in a given coal-fired power plant. As noted above, the major affecting the trace element emissions from coal-fired power plants is the volatility, of the element during the combustion process. This necessarily involves a more complete understanding of volatilization from complex mineral phases and the fate of `organically-associated` species during combustion. In addition to the volatility of trace elements, the particle size distribution plays a major role in determining the emission rates for elements, which condense before the particle collection devices. Shifting the size distribution to smaller sizes will increase the emission rates due to a drop in collection efficiency for nearly all devices for 0.1-1.0 jim diameter particles. The size distribution may be altered by the combustion conditions. Research is necessary to determine the size distribution of particles resulting from the bursting or fracturing process and the dependence on combustion conditions and coal composition. Since the major parameters are likely to be the heating rate and composition of the particle, this process may be amenable to quantative treatment Regardless, it is important to determine if increased combustion xutemperatures necessarily increase the abundance of submicron particles if so, this factor would have to be considered in evaluating the advantages of increased combustion temperatures (e.g. increased plant efficiency, lower emission rates for other pollutants, etc.). Research must also address questions concerning the rate particle growth during combustion. Other problems involve the nature of the diffusion and crystal growth of trace species in ply ash particles after formation. Increased efforts should also be applied to the development of techniques for actual sampling of the high temperature combustion region. Ideally, these techniques should analyze major, minor and trace species in the gas phase and the particle size distribution well in to the condensation nuclei range, as well as elemental concentrations in the particulate matter as a function of particle size. Knowledge of the size distributions and compositions of the particulate phase through a combustion facility will be vital 10 a complete understanding of the combustion process and fly ash formation. The impact of new combustion and pollution control technologies must be care fully evaluated. And, there is an obvious need for more extensive and careful measurements of trace element emissions and particle size distributions from the various types of coal- fired plants. For example, particulate sampling methods need to be developed which avoid the loss of components with high vapour pressures. To increase the usefulness of these measurements, the coal should be analyzed, and the affinities determined for important trace element. Attempts should also be mode to determine the particle size distribution before the pollution control devices, and in the plume after most species emitted in the gas phase have become associated with the particles. There is also a need to understand the chemical and physical processes which the rates and temperatures at which the volatile species become associated with fly ash. A drop in the operating temperatures of pollution control devices may significantly reduce the emissions of these species. The correlation of these data with plant design and combustion conditions con provide both valuable emprical data on other factors affecting trace element emission rates and the means of greatly limiting the atmospheric discharge of trace element. To emphasize the effect of domesting heating to the air pollution in Turkey, concentrations of heavy metals in gas phase and in particular phase emitted from some kinds of lignite which are combusted extensively using the boiler and the stove have been studied. Gas sampling was carried out by passing the flue gas, sampled by a pump, through a thimble to remove the solid particles and extracting the trace elements in impingers including 0.1 N nitric acid. The stack particulates were sampled isokinetically using Andersen Universal Stack Sampler for the boiler and the small system for the stove and collected in the thimble for both stove and boiler. xmAll samples were chemically analyzed using a number of techniques including atomic absorption spectrophotometry. Datas of the coal combustion have been compared with each other and limit values of `Air Quality Assurance Regulation`. xiv ÖZET Hava kirliliğinin ülkemizde, özellikle bazı büyük şehirlerde giderek arttığı ve tehlikeli sonuçlar meydana getirdiği görülmektedir. Bu noktada dikkatler gerek enerji üretimi ve gerekse endüstriyel ve evsel gereksinmeler için yaygın olarak kullanılan kömür üzerine çekilmelidir. Kömürlerin yaygın olarak kullanılması diğer kirleticilerle birlikte ağır metallerinden atmosferdeki taşınımını arttırmaktadır. Bu çalışmada 80 000 kcal/h kapasiteli, TSE belgeli, elle yüklemeli, ızgaralı, üstten yanmalı ve iki kapaklı sobada çeşitli kömür örnekleriyle yanma deneyleri gerçekleştirilmiştir. Kazan deneylerinde %37 nemli Yeniköy Ağaçlı, nemi %20 civarına getirilmiş Yeniköy Ağaçlı-Güney Afrika harman, nemi %20 civarlarında bulunan Yeniköy Ağaçlı-Sibirya harman kömür örnekleri, soba deneylerinde %37 nemli Yeniköy Ağaçlı, nemi %20 civarına getirilmiş Yeniköy Ağaçlı-Güney Afrika harman, nemi %21 civarlarına getirilmiş Yeniköy Ağaçlı, nemi %15 civarına getirilmiş Yeniköy Ağaçlı kömür örnekleri kullanılmıştır. Yanma deneylerinde gerçekleştirilen emisyon ölçümleri sonucunda her kömür için ağır metallerin toz ve gaz fazdaki atmosferik yayınımlarına yanma sistemlerinin ve kömür cinslerinin etkileri araştırılmış ayrıca elde edilen sonuçlar Türk ve Alman yönetmeliklerinde (Hava Kalitesinin Korunması Yönetmeliği ve TA-Luft) sınır değerlerle de mukayese edilmiştir. ıx 132
YÖK Açık Bilim - CoH... arrow_drop_down YÖK Açık Bilim - CoHE Open ScienceMaster thesis . 2021License: CC BYData sources: YÖK Açık Bilim - CoHE Open Scienceadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10208::4f0952e8fead38450292c4ebf5ac0fb7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert YÖK Açık Bilim - CoH... arrow_drop_down YÖK Açık Bilim - CoHE Open ScienceMaster thesis . 2021License: CC BYData sources: YÖK Açık Bilim - CoHE Open Scienceadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10208::4f0952e8fead38450292c4ebf5ac0fb7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Switzerland, NetherlandsPublisher:Elsevier BV Martin Kumar Patel; Martin Kumar Patel; M. Draeck; Dolf Gielen; Ernst Worrell; Deger Saygin;Fossil fuel substitution with biomass is one of the measures to reduce carbon dioxide (CO2) emissions. This paper estimates the cost-effectiveness of raising industrial steam and producing materials (i.e. chemicals, polymers) from biomass. We quantify their long-term global potentials in terms of energy saving, CO2 emission reduction, cost and resource availability. Technically, biomass can replace all fossil fuels used for the production of materials and for generating low and medium temperature steam. Cost-effective opportunities exist for steam production from biomass residues and by substitution of high value petrochemicals which would together require more than 20 exajoules (EJ) of biomass worldwide in addition to baseline by 2030. Potentials could double in 2050 and reach 38-45 EJ (25% of the total industrial energy use), with most demand in Asia, other developing countries and economies in transition. The economic potential of using biomass as chemical feedstock is nearly as high as for steam production, indicating its importance. The exploitation of these potentials depends on energy prices and industry's access to biomass supply. Given the increasing competition for biomass from several economic sectors, more resource efficient materials need to be developed while steam production is already attractive due to its high effectiveness for reducing CO2 emissions per unit of biomass.
Utrecht University R... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.07.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.07.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2023 PortugalAuthors: Santos, Rafael de Matos Ferreira da Mota;handle: 10400.22/24114
A indústria petrolífera, que tem como um dos produtos o plástico, e a do ferro e aço são das maiores emissoras mundiais de Gases com Efeito de Estufa (GEE). Assim, atualmente, com as crescentes preocupações ambientas da população, torna-se urgente estudar o impacte ambiental das fábricas produtoras de embalagens de plástico e metal. Desse modo, a presente dissertação foi realizada na Colep Packaging Portugal e teve como objetivo calcular a pegada de carbono da fábrica referente ao ano de 2022. A avaliação da pegada de carbono foi realizada tendo como linhas orientadoras a metodologia Greenhouse Gas Protocol e sempre que possível, foram utilizados os fatores de emissão de origem primária. A pegada de carbono é dividida em três âmbitos: o primeiro é referente às emissões diretas da empresa relatora; o segundo são emissões indiretas para a produção de energia; o terceiro refere-se a emissões que ocorrem como consequência da atividade da empresa relatora. É possível afirmar que este mesmo objetivo foi atingido, obtendo-se como resultado 7 408,235 t CO2 eq de âmbito 1 (7,03%), 2 846,705 t CO2 eq de âmbito 2 (2,70%) e 95 075,239 t CO2 eq de âmbito 3 (90,27%). Globalmente, o valor calculado foi 105 330,179 t CO2 eq. As categorias que mais contribuíram para este valor da pegada de carbono são os bens e serviços adquiridos, o fim de vida dos produtos vendidos e o consumo de gás natural. Estas três categorias emitiram, em 2022, 87 732,707 t CO2 eq, o que corresponde a 83,29% das emissões totais da Colep Packaging Portugal. Para calcular a pegada de carbono foi necessário realizar um inventário, em primeiro lugar, aos tipos de energia consumida. Nestes parâmetros estão incluídos o gás natural, propano, gasóleo, gasolina e líquidos refrigerantes para o âmbito 1 e a eletricidade para o âmbito 2. Foi também realizado um inventário para o âmbito 3 a todas as matérias-primas, serviços e bens capitais adquiridos, ao transporte a montante (de matérias-primas) e a jusante (de produtos vendidos), aos resíduos gerados no processo produtivo, às viagens de negócios e diárias dos colaboradores, aos bens alugados a montante (veículos de leasing e paletes) e a jusante (edifícios), ao processamento dos produtos vendidos e ao fim de vida destes. Também se analisou o uso dos produtos vendidos, os franchises da empresa e os investimentos, porém, estas categorias não registaram valores. De maneira a reduzir o valor da pegada de carbono sugere-se a realização de algumas medidas. Ao todo são 16 de onde se destacam a substituição dos veículos a combustão por elétricos, a utilização de camiões elétricos, a utilização de energia 100% renovável, a utilização de comboios para transporte superior a 250 km, a instalação de painéis solares, o aumento da eficiência energética e a incorporação de reciclado nas embalagens metálicas. Ao serem implementadas, as 16 medidas permitem reduzir em 54 262,702 t CO2 eq, o que corresponde a 51,52% do atual valor global.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2595::67eb2cca17dacea22b5d7426c394f961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2595::67eb2cca17dacea22b5d7426c394f961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu