- home
- Advanced Search
- Energy Research
- Restricted
- Bioresource Technology
- Energy Research
- Restricted
- Bioresource Technology
description Publicationkeyboard_double_arrow_right Article , Journal 2011 ItalyPublisher:Elsevier BV Authors: MENARDO, SIMONA; GIOELLI, Fabrizio Stefano; BALSARI, Paolo;In biogas plants, huge volumes of digestate are produced daily and stored in uncovered tanks, which leak methane into the atmosphere and cause negative environmental impacts. To better understand the effect that different operating parameters of anaerobic digestion plants have on digestate residual methane yield, four digestate samples collected from plants with very different operations were analysed in batch reactors. Their methane yields were very heterogeneous and varied between 2.88 and 37.63 NL/kgVS. The methane yield was shown to be highly influenced by the A.D. plant Organic Loading Rate and by feedstock quality; hydraulic retention time had only limited effects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.10.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu91 citations 91 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.10.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Palatsi, J.; Laureni, M.; Andres, M.V.; Flotats, X.; Bangsø Nielsen, Henrik; Angelidaki, Irini;pmid: 19473835
Long chain fatty acids (LCFA) concentrations over 1.0 gL(-1) were inhibiting manure thermophilic digestion, in batch and semi-continuous experiments, resulting in a temporary cease of the biogas production. The aim of the work was to test and evaluate several recovery actions, such as reactor feeding patterns, dilution and addition of adsorbents, in order to determine the most appropriate strategy for fast recovery of the reactor activity in manure based plants inhibited by LCFA. Dilution with active inoculum for increasing the biomass/LCFA ratio, or addition of adsorbents for adsorbing the LCFA and reducing the bioavailable LCFA concentration, were found to be the best recovery strategies, improving the recovery time from 10 to 2 days, in semi-continuously fed systems. Moreover, acclimatization was introduced by repeated inhibition and process recovery. The subsequent exposure of the anaerobic biomass to an inhibitory concentration of LCFA improved the recovery ability of the system, indicated as increasing degradation rates from 0.04 to 0.16 g COD_CH(4)/g VS day. The incubation time between subsequent pulses, or discontinuous LCFA pulses, seems to be a decisive process parameter to tackle LCFA inhibition in manure anaerobic co-digestion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2009.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu175 citations 175 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2009.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors: Benedetti V; Pecchi M; Baratieri M;Hydrothermal carbonization (HTC) can convert wet biomass into hydrochar (HC), a solid carbonaceous material exploitable as fuel. In this study, HTC was applied to anaerobic digestate from cow manure. HCs obtained at three HTC temperatures (180, 220, 250 °C) were characterized in detail and their combustion behavior was investigated by thermogravimetric analysis (TGA) coupled with peak deconvolution. Increasing HTC temperatures increased the fixed carbon content (17.9-20.7%), the ash content (27.2-32.5%) and the calorific value (14.3-18.2 MJ/kg), while decreased the hydrogen (5.01-4.54%) and oxygen content (24.09-12.35%) of HCs. DTG profiles peak deconvolution unveils the presence of five major components in the HCs. HCs combustion kinetics were studied applying the KAS method. Average apparent activation energy values of 100, 88, 67 kJ mol-1 were obtained for HC180, HC220, HC250, respectively. HTC at 250 °C produced the HC with the best fuel characteristics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Funded by:MIURMIURAuthors: Braguglia CM; Gallipoli A; Gianico A; Pagliaccia P;More than 400 papers in the last 5 years have been published on FW into energy. Food waste complexity and composition affects anaerobic conversion. Scaling up of the AD process is fundamental to assess the real methane potential. Methanogenesis is often rate limiting step leading to pH drop and instability. Strategies to improve AD performances and stability are here reviewed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.06.145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu326 citations 326 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.06.145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Bruni, Emiliano; Jensen, A.P.; Angelidaki, Irini;pmid: 20638274
Organic waste such as manure is an important resource for biogas production. The biodegradability of manures is however limited because of the recalcitrant nature of the biofibers it contains. To increase the biogas potential of the biofibers in digested manure, we investigated physical treatment (milling), chemical treatment (CaO), biological treatment (enzymatic and partial aerobic microbial conversion), steam treatment with catalyst (H(3)PO(4) or NaOH) and combination of biological and steam treatments (biofibers steam-treated with catalyst were treated with laccase enzyme). We obtained the highest methane yield increase through the chemical treatment that resulted in 66% higher methane production compared to untreated biofibers. The combination of steam treatment with NaOH and subsequent enzymatic treatment increased the methane yield by 34%. To choose the optimal treatment, the energy requirements relative to the energy gain as extra biogas production have to be taken into account, as well as the costs of chemicals or enzymes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.06.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu163 citations 163 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.06.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012Publisher:Elsevier BV Funded by:EC | GLYFINERYEC| GLYFINERYAuthors: Liu, Xiaoying; Jensen, Peter Ruhdal; Workman, Mhairi;pmid: 22093973
Glycerol, the by-product of biodiesel production, is considered as a waste by biodiesel producers. This study demonstrated the potential of utilising the glycerol surplus through conversion to ethanol by the yeast Pachysolen tannophilus (CBS4044). This study demonstrates a robust bioprocess which was not sensitive to the batch variability in crude glycerol dependent on raw materials used for biodiesel production. The oxygen transfer rate (OTR) was a key factor for ethanol production, with lower OTR having a positive effect on ethanol production. The highest ethanol production was 17.5 g/L on 5% (v/v) crude glycerol, corresponding to 56% of the theoretical yield. A staged batch process achieved 28.1g/L ethanol, the maximum achieved so far for conversion of glycerol to ethanol in a microbial bioprocess. The fermentation physiology has been investigated as a means to designing a competitive bioethanol production process, potentially improving economics and reducing waste from industrial biodiesel production.
Research at ASB arrow_drop_down http://dx.doi.org/10.1016/j.bi...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2011.10.065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research at ASB arrow_drop_down http://dx.doi.org/10.1016/j.bi...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2011.10.065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 DenmarkPublisher:Elsevier BV Dirk de Beer; Peter Stief; Peter Stief; Judith M. Klatt; Anna Behrendt; Sheldon Tarre; Michael Beliavski; Michal Green;pmid: 25212823
The possible shift of a bioreactor for NO3(-) removal from predominantly denitrification (DEN) to dissimilatory nitrate reduction to ammonium (DNRA) by elevated electron donor supply was investigated. By increasing the C/NO3(-) ratio in one of two initially identical reactors, the production of high sulfide concentrations was induced. The response of the dissimilatory NO3(-) reduction processes to the increased availability of organic carbon and sulfide was monitored in a batch incubation system. The expected shift from a DEN- towards a DNRA-dominated bioreactor was not observed, also not under conditions where DNRA would be thermodynamically favorable. Remarkably, the microbial community exposed to a high C/NO3(-) ratio and sulfide concentration did not use the most energy-gaining process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.08.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.08.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 DenmarkPublisher:Elsevier BV Authors: Ashekuzzaman,; Poulsen, Tjalfe;pmid: 20974531
This study investigated methane yield via anaerobic digestion of multi-component substrates based on mixtures of biodegradable single-component substrates with cow dung as main component. Bench and full-scale digestion experiments were carried out for both single and multi-component substrates to identify the relationship between methane yield and substrate composition. Results from both bench- and full-scale experiments corresponded well and showed that using multi-component substrates increases the methane yield much more than what would be expected from digestion of single substrates. Process stability as indicated by gas production, pH and NH(4)(+) concentration variations were also improved by using multi-component substrates compared to digestion of single-component substrates. The results, thus, suggest that assessment of methane yield for multi-component substrates cannot reliably be based on methane yields for corresponding single-component substrates but should instead be measured directly.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.09.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.09.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 ItalyPublisher:Elsevier BV MUNZ, GIULIO; G. Mori; L. Salvadori; C. Barberio; LUBELLO, CLAUDIO;In this study a pilot-scale membrane bioreactor (MBR) and a conventional activated sludge plant (CASP), treating the same tannery wastewaters and in the same operating conditions, have been compared in order to evaluate the overall treatment efficiency, the presence and distribution of Gram negative bacteria and the kinetics of nitrifying bacteria. Process efficiency was evaluated in terms of organic and nitrogen compounds: the MBR showed a higher COD removal (+4%) and a more stable and complete nitrification. The Gram negative bacteria were detected by fluorescent in situ hybridization (FISH) with phylogenetic probes monitoring of alpha-, beta- and gamma-Proteobacteria, of the main ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria of the Nitrobacter and Nitrospira genera. The results showed that the main differences between the two sludges were: the higher abundance of alpha- and gamma-Proteobacteria in the MBR bioreactor and the presence of AOB aggregates only on the surfaces of MBR flocs. Finally, the titrimetric (pH-stat, DO-stat) tests showed similar values of the kinetic parameters of the nitrifiers both in MBR and CASP sludge.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2008.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2008.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 PortugalPublisher:Elsevier BV Eduardo V. Soares; Eduardo V. Soares; Manuela D. Machado; Cláudia Gouveia; Helena M. V. M. Soares; Mónica S.F. Santos;In this work, a brewer's yeast strain was used to remove heavy metals from a synthetic effluent. The solid-liquid separation process was carried out using the flocculation ability of the strain. The yeast strain was able to sediment in the presence of Cu2+, Ni2+, Zn2+, Cd2+ and Cr3+, which evidences that the flocculation can be used as a cheap and natural separation process for an enlarged range of industrial effluents. For a biomass concentration higher than 0.5 g/l, more than 95% of the cells were settled after 5 min; this fact shows that the auto-aggregation of yeast biomass is a rapid and efficient separation process. Cells inactivated at 45 degrees C maintain the sedimentation characteristics, while cells inactivated at 80 degrees C lose partially (40%) the flocculation. The passage of metal-loaded effluent through a series of sequential batches allowed, after the second batch, the reduction of the Ni2+ concentration in solution for values below the legal limit of discharge of wastewater in natural waters (2mg/l); this procedure corresponds to a removal of 91%. A subsequent batch had a marginal effect on Ni2+ removal (96%). Together, the results obtained suggest that the use of brewing flocculent biomass looks a promising alternative in the bioremediation of metal-loaded industrial effluents since the removal of the heavy metals and cell separation are simultaneously achieved.
Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMOther literature type . 2008Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.05.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu109 citations 109 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMOther literature type . 2008Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.05.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011 ItalyPublisher:Elsevier BV Authors: MENARDO, SIMONA; GIOELLI, Fabrizio Stefano; BALSARI, Paolo;In biogas plants, huge volumes of digestate are produced daily and stored in uncovered tanks, which leak methane into the atmosphere and cause negative environmental impacts. To better understand the effect that different operating parameters of anaerobic digestion plants have on digestate residual methane yield, four digestate samples collected from plants with very different operations were analysed in batch reactors. Their methane yields were very heterogeneous and varied between 2.88 and 37.63 NL/kgVS. The methane yield was shown to be highly influenced by the A.D. plant Organic Loading Rate and by feedstock quality; hydraulic retention time had only limited effects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.10.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu91 citations 91 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.10.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Palatsi, J.; Laureni, M.; Andres, M.V.; Flotats, X.; Bangsø Nielsen, Henrik; Angelidaki, Irini;pmid: 19473835
Long chain fatty acids (LCFA) concentrations over 1.0 gL(-1) were inhibiting manure thermophilic digestion, in batch and semi-continuous experiments, resulting in a temporary cease of the biogas production. The aim of the work was to test and evaluate several recovery actions, such as reactor feeding patterns, dilution and addition of adsorbents, in order to determine the most appropriate strategy for fast recovery of the reactor activity in manure based plants inhibited by LCFA. Dilution with active inoculum for increasing the biomass/LCFA ratio, or addition of adsorbents for adsorbing the LCFA and reducing the bioavailable LCFA concentration, were found to be the best recovery strategies, improving the recovery time from 10 to 2 days, in semi-continuously fed systems. Moreover, acclimatization was introduced by repeated inhibition and process recovery. The subsequent exposure of the anaerobic biomass to an inhibitory concentration of LCFA improved the recovery ability of the system, indicated as increasing degradation rates from 0.04 to 0.16 g COD_CH(4)/g VS day. The incubation time between subsequent pulses, or discontinuous LCFA pulses, seems to be a decisive process parameter to tackle LCFA inhibition in manure anaerobic co-digestion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2009.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu175 citations 175 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2009.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors: Benedetti V; Pecchi M; Baratieri M;Hydrothermal carbonization (HTC) can convert wet biomass into hydrochar (HC), a solid carbonaceous material exploitable as fuel. In this study, HTC was applied to anaerobic digestate from cow manure. HCs obtained at three HTC temperatures (180, 220, 250 °C) were characterized in detail and their combustion behavior was investigated by thermogravimetric analysis (TGA) coupled with peak deconvolution. Increasing HTC temperatures increased the fixed carbon content (17.9-20.7%), the ash content (27.2-32.5%) and the calorific value (14.3-18.2 MJ/kg), while decreased the hydrogen (5.01-4.54%) and oxygen content (24.09-12.35%) of HCs. DTG profiles peak deconvolution unveils the presence of five major components in the HCs. HCs combustion kinetics were studied applying the KAS method. Average apparent activation energy values of 100, 88, 67 kJ mol-1 were obtained for HC180, HC220, HC250, respectively. HTC at 250 °C produced the HC with the best fuel characteristics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Funded by:MIURMIURAuthors: Braguglia CM; Gallipoli A; Gianico A; Pagliaccia P;More than 400 papers in the last 5 years have been published on FW into energy. Food waste complexity and composition affects anaerobic conversion. Scaling up of the AD process is fundamental to assess the real methane potential. Methanogenesis is often rate limiting step leading to pH drop and instability. Strategies to improve AD performances and stability are here reviewed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.06.145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu326 citations 326 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.06.145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Bruni, Emiliano; Jensen, A.P.; Angelidaki, Irini;pmid: 20638274
Organic waste such as manure is an important resource for biogas production. The biodegradability of manures is however limited because of the recalcitrant nature of the biofibers it contains. To increase the biogas potential of the biofibers in digested manure, we investigated physical treatment (milling), chemical treatment (CaO), biological treatment (enzymatic and partial aerobic microbial conversion), steam treatment with catalyst (H(3)PO(4) or NaOH) and combination of biological and steam treatments (biofibers steam-treated with catalyst were treated with laccase enzyme). We obtained the highest methane yield increase through the chemical treatment that resulted in 66% higher methane production compared to untreated biofibers. The combination of steam treatment with NaOH and subsequent enzymatic treatment increased the methane yield by 34%. To choose the optimal treatment, the energy requirements relative to the energy gain as extra biogas production have to be taken into account, as well as the costs of chemicals or enzymes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.06.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu163 citations 163 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.06.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012Publisher:Elsevier BV Funded by:EC | GLYFINERYEC| GLYFINERYAuthors: Liu, Xiaoying; Jensen, Peter Ruhdal; Workman, Mhairi;pmid: 22093973
Glycerol, the by-product of biodiesel production, is considered as a waste by biodiesel producers. This study demonstrated the potential of utilising the glycerol surplus through conversion to ethanol by the yeast Pachysolen tannophilus (CBS4044). This study demonstrates a robust bioprocess which was not sensitive to the batch variability in crude glycerol dependent on raw materials used for biodiesel production. The oxygen transfer rate (OTR) was a key factor for ethanol production, with lower OTR having a positive effect on ethanol production. The highest ethanol production was 17.5 g/L on 5% (v/v) crude glycerol, corresponding to 56% of the theoretical yield. A staged batch process achieved 28.1g/L ethanol, the maximum achieved so far for conversion of glycerol to ethanol in a microbial bioprocess. The fermentation physiology has been investigated as a means to designing a competitive bioethanol production process, potentially improving economics and reducing waste from industrial biodiesel production.
Research at ASB arrow_drop_down http://dx.doi.org/10.1016/j.bi...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2011.10.065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research at ASB arrow_drop_down http://dx.doi.org/10.1016/j.bi...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2011.10.065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 DenmarkPublisher:Elsevier BV Dirk de Beer; Peter Stief; Peter Stief; Judith M. Klatt; Anna Behrendt; Sheldon Tarre; Michael Beliavski; Michal Green;pmid: 25212823
The possible shift of a bioreactor for NO3(-) removal from predominantly denitrification (DEN) to dissimilatory nitrate reduction to ammonium (DNRA) by elevated electron donor supply was investigated. By increasing the C/NO3(-) ratio in one of two initially identical reactors, the production of high sulfide concentrations was induced. The response of the dissimilatory NO3(-) reduction processes to the increased availability of organic carbon and sulfide was monitored in a batch incubation system. The expected shift from a DEN- towards a DNRA-dominated bioreactor was not observed, also not under conditions where DNRA would be thermodynamically favorable. Remarkably, the microbial community exposed to a high C/NO3(-) ratio and sulfide concentration did not use the most energy-gaining process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.08.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.08.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 DenmarkPublisher:Elsevier BV Authors: Ashekuzzaman,; Poulsen, Tjalfe;pmid: 20974531
This study investigated methane yield via anaerobic digestion of multi-component substrates based on mixtures of biodegradable single-component substrates with cow dung as main component. Bench and full-scale digestion experiments were carried out for both single and multi-component substrates to identify the relationship between methane yield and substrate composition. Results from both bench- and full-scale experiments corresponded well and showed that using multi-component substrates increases the methane yield much more than what would be expected from digestion of single substrates. Process stability as indicated by gas production, pH and NH(4)(+) concentration variations were also improved by using multi-component substrates compared to digestion of single-component substrates. The results, thus, suggest that assessment of methane yield for multi-component substrates cannot reliably be based on methane yields for corresponding single-component substrates but should instead be measured directly.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.09.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.09.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 ItalyPublisher:Elsevier BV MUNZ, GIULIO; G. Mori; L. Salvadori; C. Barberio; LUBELLO, CLAUDIO;In this study a pilot-scale membrane bioreactor (MBR) and a conventional activated sludge plant (CASP), treating the same tannery wastewaters and in the same operating conditions, have been compared in order to evaluate the overall treatment efficiency, the presence and distribution of Gram negative bacteria and the kinetics of nitrifying bacteria. Process efficiency was evaluated in terms of organic and nitrogen compounds: the MBR showed a higher COD removal (+4%) and a more stable and complete nitrification. The Gram negative bacteria were detected by fluorescent in situ hybridization (FISH) with phylogenetic probes monitoring of alpha-, beta- and gamma-Proteobacteria, of the main ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria of the Nitrobacter and Nitrospira genera. The results showed that the main differences between the two sludges were: the higher abundance of alpha- and gamma-Proteobacteria in the MBR bioreactor and the presence of AOB aggregates only on the surfaces of MBR flocs. Finally, the titrimetric (pH-stat, DO-stat) tests showed similar values of the kinetic parameters of the nitrifiers both in MBR and CASP sludge.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2008.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2008.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 PortugalPublisher:Elsevier BV Eduardo V. Soares; Eduardo V. Soares; Manuela D. Machado; Cláudia Gouveia; Helena M. V. M. Soares; Mónica S.F. Santos;In this work, a brewer's yeast strain was used to remove heavy metals from a synthetic effluent. The solid-liquid separation process was carried out using the flocculation ability of the strain. The yeast strain was able to sediment in the presence of Cu2+, Ni2+, Zn2+, Cd2+ and Cr3+, which evidences that the flocculation can be used as a cheap and natural separation process for an enlarged range of industrial effluents. For a biomass concentration higher than 0.5 g/l, more than 95% of the cells were settled after 5 min; this fact shows that the auto-aggregation of yeast biomass is a rapid and efficient separation process. Cells inactivated at 45 degrees C maintain the sedimentation characteristics, while cells inactivated at 80 degrees C lose partially (40%) the flocculation. The passage of metal-loaded effluent through a series of sequential batches allowed, after the second batch, the reduction of the Ni2+ concentration in solution for values below the legal limit of discharge of wastewater in natural waters (2mg/l); this procedure corresponds to a removal of 91%. A subsequent batch had a marginal effect on Ni2+ removal (96%). Together, the results obtained suggest that the use of brewing flocculent biomass looks a promising alternative in the bioremediation of metal-loaded industrial effluents since the removal of the heavy metals and cell separation are simultaneously achieved.
Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMOther literature type . 2008Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.05.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu109 citations 109 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMOther literature type . 2008Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.05.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu