- home
- Advanced Search
- Energy Research
- Processes
- Energy Research
- Processes
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG Authors: Chengming Hu; Jinjie He; Bin Zhang; Wei Chen;doi: 10.3390/pr7100649
A large amount of solid and liquid waste is produced in pesticide production. It is necessary to adopt appropriate disposal processes to reduce pollutant emissions. A co-incineration scheme for mixing multi-component wastes in a rotary kiln was proposed for waste disposal from pesticide production. According to the daily output of solid and liquid wastes, the proportion of mixing was determined. An experiment of the co-incineration of solid and liquid wastes was established. Experimental results showed that the mixed waste could be completely disposed at 850 °C, and the residence time in the kiln exceeded 1 h. A model method for mixture and diesel oil-assisted combustion was proposed. Numerical simulation was performed to predict the granular motion and reveal the combustion interactions of the co-incineration of mixed wastes in the rotary kiln. Simulation results reproduced movements, such as rolling and cascading, and obtained the optimum rotational speed and diesel oil flow for the rotary kiln incineration operation. The simulation showed that the temperature in the kiln was maintained at 850 °C, and the mass fraction of CO and O2 at the outlet reached the standard for the complete combustion of the waste. Finally, the rotary kiln incineration and flue gas treatment processes were successfully applied in engineering for green production of pesticides.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr7100649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr7100649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Hendrik Etzold; Benjamin Wirth; Philipp Knötig;doi: 10.3390/pr9081346
This research paper evaluates hydrothermal carbonization (HTC) as a possible treatment for sewage sludge, including phosphorus recycling. German governmental requirements force a high number of wastewater treatment plants (WWTP) to recover phosphorus from sewage sludge above limits of 20 g kgTS−1 before further disposal (e.g., co-incineration). The results show that pH reduction has a positive effect on shifting phosphorus to the liquid phase during HTC. Although the experimental results of this research do not yet achieve the necessary phosphorus reduction, various calculations are made to achieve this goal in future experimental studies. In order to be able to assess the energy benefits of HTC, Aspen Plus modeling was used to show the positive impact of implementing this technology in a WWTP. It is shown that the mechanical dewaterability of sewage sludge (SS) increases after HTC enabling energy savings by means of subsequent thermal drying. A heat optimized HTC is able to cut energy expenses by half, further providing a phosphorus-depleted hydrochar for extensive energetic use.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr9081346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr9081346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 FinlandPublisher:MDPI AG Authors: Prajapati, Sonalben B.;Gautam, Alok;
Gautam, Alok
Gautam, Alok in OpenAIREGautam, Shina;
Gautam, Shina
Gautam, Shina in OpenAIREYao, Zhitong;
+3 AuthorsYao, Zhitong
Yao, Zhitong in OpenAIREPrajapati, Sonalben B.;Gautam, Alok;
Gautam, Alok
Gautam, Alok in OpenAIREGautam, Shina;
Gautam, Shina
Gautam, Shina in OpenAIREYao, Zhitong;
Yao, Zhitong
Yao, Zhitong in OpenAIRETesfaye, Fiseha;
Lü; Xiaoshu;Tesfaye, Fiseha
Tesfaye, Fiseha in OpenAIREdoi: 10.3390/pr11010229
Waste-printed circuit boards (WPCBs) account for approximately 3–6 wt% of total electronic waste. Due to their content of thermosetting materials and added brominated fire retardants, their recycling and disposal is difficult and not eco-friendly. Pyrolysis as a thermal degradation process may assist in the solution of this problem. In addition, using biomass as an additive can upgrade the bio-oil and fix bromines in the char. In this study, cotton stalk (CS) is chosen as an additive and kinetic of the pyrolysis of three samples namely: PCB, CS, and CS:PCB (50:50) were investigated by the thermogravimetric analyzer (TGA) at heating rates of 5, 10, and 15 K/min. Three non-isothermal methods: FWO, KAS, and Starink were found in good agreement with the TGA data; however, the FWO method was more efficient in the description of the degradation mechanism of solid-state reactions. For CS and CS:PCB (50:50), α was increased from 0.2 to 0.9 with the FWO method, and calculated Eα values were found in the range of 121.43–151.88 and 151.60–105.67 kJ/mol in zone 1, while 197.06–79.22 and 115.90–275.06 kJ/mol in zone 2, respectively. Whereas, for PCB in zone 1, Eα values were found to be in the range of 190.23–93.88 kJ/mol. The possible decomposition mechanism was determined by the Criado method, which was in agreement with the mechanism model for reaction order n = 3. The oil product was also analyzed using Fourier-Transform Infrared Spectroscopy analysis.
Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2023License: CC BYFull-Text: https://doi.org/10.3390/pr11010229Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11010229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2023License: CC BYFull-Text: https://doi.org/10.3390/pr11010229Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11010229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022Publisher:MDPI AG Funded by:[no funder available]Authors:Leigh Duncan Hamilton;
Harald Zetzener;Leigh Duncan Hamilton
Leigh Duncan Hamilton in OpenAIREArno Kwade;
Arno Kwade
Arno Kwade in OpenAIREdoi: 10.3390/pr10112438
Cement hydration within particle bed concrete 3D printing processes can be benefited by storing water in the otherwise dry aggregate bulk material. Additional water also has the advantage of acting as a source of passive cooling. However, even small amounts of liquid lead to detrimental effects on bulk properties, such as the flowability. For that reason, this study proposes implementing dry water (DW) in order to store large amounts of water in a bulk material of non-absorbent, coarse sand whilst maintaining its initial bulk properties. DW is essentially created by mixing water and hydrophobic fumed silica in a high shear process, leading to water droplets surrounded by a protective silica shell. Herein, several DW variants, distinguished by their deionised water to hydrophobic silica ratio, were mixed with non-absorbent, coarse sand particles. In addition, mixtures were produced to contain a specific overall water content of up to wH2O = 5% within the bulk material. It was shown that dry water can be used to incorporate large amounts of water into a granular bulk material and simultaneously preserve flow properties. The decisive factor is the proportion of hydrophobic silica for a given water content as the DW capsules may otherwise not endure mechanical stress during mixing. However, even minimal quantities of silica can prevent liquid capillary bridges from forming and, thus, inhibit bulk property degradation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10112438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10112438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Huilan Zheng;Gaurav Mirlekar;
Gaurav Mirlekar
Gaurav Mirlekar in OpenAIRELars Nord;
Lars Nord
Lars Nord in OpenAIREdoi: 10.3390/pr10122727
In this paper, a novel method is proposed for the incorporation of data-driven machine learning techniques into process optimization. Such integration improves the computational time required for calculations during optimization and benefits the online application of advanced control algorithms. The proposed method is illustrated via the chemical absorption-based postcombustion CO2 capture process, which plays an important role in the reduction of CO2 emissions to address climate challenges. These processes simulated in a software environment are typically based on first-principle models and calculate physical properties from basic physical quantities such as mass and temperature. Employing first-principle models usually requires a long computation time, making process optimization and control challenging. To overcome this challenge, in this study, machine learning algorithms are used to simulate the postcombustion CO2 capture process. The extreme gradient boosting (XGBoost) and support vector regression (SVR) algorithms are employed to build models for prediction of carbon capture rate (CR) and specific reboiler duty (SRD). The R2 (a statistical measure that represents the fitness) of these models is, on average, greater than 90% for all the cases. XGBoost and SVR take 0.022 and 0.317 s, respectively, to predict CR and SRD of 1318 cases, whereas the first-principal process simulation model needs 3.15 s to calculate one case. The models built by XGBoost are employed in the optimization methods, such as an agent-based approach represented by the particle swarm optimization and stochastic technique indicated by the simulated annealing, to find specific optimal operating conditions. The most economical case, in which the CR is 72.2% and SRD is 4.3 MJ/kg, is obtained during optimization. The results show that computations with the data-driven models incorporated in the optimization technique are faster than first-principle modeling approaches. Thus, the application of machine learning techniques in the optimization of carbon capture technologies is demonstrated successfully.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10122727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr10122727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Heng Li; Xianmin Li; Wanchao Mao; Junyu Chang; Xu Chen;Chunhui Zhao;
Wenhai Wang;Chunhui Zhao
Chunhui Zhao in OpenAIREdoi: 10.3390/pr11051486
Anomaly detection for core temperature has great significance in maintaining the safety of nuclear power plants. However, traditional auto-encoder-based anomaly detection methods might extract the latent space features with redundancy, which may lead to missing and false alarms. To address this problem, the idea of feature disentangling is introduced under the auto-encoder framework in this paper. First, a feature disentangling auto-encoder (DAE) is proposed where a latent space disentangling loss is designed to disentangle the features. We further propose an incrementally feature disentangling auto-encoder (IDAE), which is the improved version of DAE. In the IDAE model, an incremental feature generation strategy is developed, which enables the model to evaluate the disentangling degree to adaptively determine the feature dimension. Furthermore, an iterative training framework is designed, which focuses on the parameter training of the newly incremented feature, overcoming the difficulty of model training. Finally, we illustrate the effectiveness and superiority of the proposed method on a real nuclear reactor core temperature dataset. IDAE achieves average false alarm rates of 4.745% and 6.315%, respectively, using two monitoring statistics, and achieves average missing alarm rates of 6.4% and 2.9%, respectively, using two monitoring statistics, outperforming the other methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr11051486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG Haiming Sun; Mengdi Gao; Conghu Liu; Xuehong Shen; Jianqing Chen;doi: 10.3390/pr7050275
In order to quantitatively evaluate and improve the sustainability of machining systems, this paper presents an emergy (the amount of energy consumed in direct and indirect transformations to make a product or service) based sustainability evaluation and improvement method for machining systems, contributing to the improvement of energy efficiency, resource efficiency and environmental performance, and realizing the sustainability development. First, the driver and challenge are studied, and the scope and hypothesis of the sustainable machining system are illustrated. Then, the emergy-based conversion efficiency model is proposed, which are (1) effective emergy utilization rate (EEUR), (2) emergy efficiency of unit product (EEUP) and (3) emergy conversion efficiency (ECE), to measure and evaluate the sustainable machining system from the perspectives of energy, resource and environment. Finally, the proposed model is applied to a vehicle-bridge machining process, and the results show that this paper provides the theoretical and method support for evaluating and improving the sustainable machining processes to decouple the resources and development of the manufacturing industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr7050275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr7050275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Mallareddy Mounica;Bhooshan A. Rajpathak;
Bhooshan A. Rajpathak
Bhooshan A. Rajpathak in OpenAIREMohan Lal Kolhe;
K. Raghavendra Naik; +2 AuthorsMohan Lal Kolhe
Mohan Lal Kolhe in OpenAIREMallareddy Mounica;Bhooshan A. Rajpathak;
Bhooshan A. Rajpathak
Bhooshan A. Rajpathak in OpenAIREMohan Lal Kolhe;
K. Raghavendra Naik;Mohan Lal Kolhe
Mohan Lal Kolhe in OpenAIREJanardhan Rao Moparthi;
Sravan Kumar Kotha;Janardhan Rao Moparthi
Janardhan Rao Moparthi in OpenAIREdoi: 10.3390/pr12050892
The need for public fast electric vehicle charging station (FEVCS) infrastructure is growing to meet the zero-emission goals of the transportation sector. However, the large charging demand of the EV fleet may adversely impact the grid’s stability and reliability. To improve grid stability and reliability, the development of a DC microgrid (MG) leveraging renewable energy sources to supply the energy demands of FEVCSs is the sustainable solution. Balancing the intermittent EV charging demand and fluctuating renewable energy generation with the stable DC bus voltage of a DC MG is a challenging objective. To address this objective, a piece-wise droop control strategy is proposed in this work. The proposed scheme regulates DC bus voltage and power sharing with droop value updating in a region-based load current distribution. Voltage compensation in individual regions is carried out to further improve the degree of freedom. In this paper, the performance of the proposed strategy is evaluated with the consideration of real-time solar PV dynamics and EV load dynamics. Further, to showcase the effectiveness of the proposed strategy, a comparative analysis with a maximum power point tracking (MPPT) controller against various dynamic EV load scenarios is carried out, and the results are validated through a hardware-in-loop experimental setup. Despite the intermittent source and EV load dynamics, the proposed piece-wise droop control can maintain voltage regulation with less than 1% deviation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr12050892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr12050892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 ItalyPublisher:MDPI AG Funded by:MIURMIURAuthors: Fabiana Lanzillo;Giacomo Ruggiero;
Giacomo Ruggiero
Giacomo Ruggiero in OpenAIREFrancesca Raganati;
Francesca Raganati
Francesca Raganati in OpenAIREMaria Elena Russo;
+1 AuthorsMaria Elena Russo
Maria Elena Russo in OpenAIREFabiana Lanzillo;Giacomo Ruggiero;
Giacomo Ruggiero
Giacomo Ruggiero in OpenAIREFrancesca Raganati;
Francesca Raganati
Francesca Raganati in OpenAIREMaria Elena Russo;
Antonio Marzocchella;Maria Elena Russo
Maria Elena Russo in OpenAIREdoi: 10.3390/pr8091075
Syngas (CO, CO2, and H2) has attracted special attention due to the double benefit of syngas fermentation for carbon sequestration (pollution reduction), while generating energy. Syngas can be either produced by gasification of biomasses or as a by-product of industrial processes. Only few microorganisms, mainly clostridia, were identified as capable of using syngas as a substrate to produce medium chain acids, or alcohols (such as butyric acid, butanol, hexanoic acid, and hexanol). Since CO plays a critical role in the availability of reducing equivalents and carbon conversion, this work assessed the effects of constant CO partial pressure (PCO), ranging from 0.5 to 2.5 atm, on cell growth, acid production, and solvent production, using Clostridium carboxidivorans. Moreover, this work focused on the effect of the liquid to gas volume ratio (VL/VG) on fermentation performances; in particular, two VL/VG were considered (0.28 and 0.92). The main results included—(a) PCO affected the growth kinetics of the microorganism; indeed, C. carboxidivorans growth rate was characterized by CO inhibition within the investigated range of CO concentration, and the optimal PCO was 1.1 atm (corresponding to a dissolved CO concentration of about 25 mg/L) for both VL/VG used; (b) growth differences were observed when the gas-to-liquid volume ratio changed; mass transport phenomena did not control the CO uptake for VL/VG = 0.28; on the contrary, the experimental CO depletion rate was about equal to the transport rate in the case of VL/VG = 0.92.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr8091075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr8091075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors:Pablo Donoso-García;
Pablo Donoso-García
Pablo Donoso-García in OpenAIRELuis Henríquez-Vargas;
Juan González;Luis Henríquez-Vargas
Luis Henríquez-Vargas in OpenAIREIsaac Díaz;
+1 AuthorsIsaac Díaz
Isaac Díaz in OpenAIREPablo Donoso-García;
Pablo Donoso-García
Pablo Donoso-García in OpenAIRELuis Henríquez-Vargas;
Juan González;Luis Henríquez-Vargas
Luis Henríquez-Vargas in OpenAIREIsaac Díaz;
Isaac Díaz
Isaac Díaz in OpenAIREIsmael Fuentes;
Ismael Fuentes
Ismael Fuentes in OpenAIREdoi: 10.3390/pr12020357
An experimental study and dimensional analysis of the effective heat transfer coefficient in a continuous-indirect rotatube dryer using forest biomass as the granular material isare developed in the present work. The study employed a factorial design 33 to investigate the effects of feed flow frequency (20–35–50 (Hz)), drum rotational velocity (6–8–10 (rpm)), and saturated vapor pressure (4–5–6 (bar)) on the heat transfer coefficient. During steady state conditions, the moisture content profiles and inlet and outlet temperatures were measured within the experimental region, and parameters, such as the effective heat transfer coefficient, solid retention change, and moisture content ratio were studied. The results showed that heat transfer was optimized with high solid feeding rates, low pressure, and low rotation, with solid feeding being the predominant factor. The moisture content profiles revealed a change in the hydrodynamic behavior, with the center point of the experimental region being the least optimal. The dimensional analysis yielded a Nu number as a function of Pe, Fr, and the feeding dimensionless number. A new dimensionless energy efficiency number improved the coefficient correlation from 85.88 (%) to 94.46 (%), indicating the developed model potential to predict dimensionless variables and scale continuous-indirect rotatube dryers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr12020357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr12020357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu